Emergence of Real-Time: Real-time Analysis of Customer Financial Activities With Apache Flink

Emerging Technology For Enterprise Conference
April 11 - 12, 2016
Philadelphia, PA

Srinivas (Srini) Palthepu, Ph.D.
Sr. Manager, Big Data Engineering
Capital One
1. Capital One
2. Traditional Batch Analytics
3. The Great Paradigm Shift – Real-Time Analytics
4. What are the Drivers?
5. Apache Flink – Next Generation Big Data Analytics Framework
6. Business Use Case: Customer Activity Event Logs
7. Conclusions
Capital One is a *software engineering* company *whose products happen to be financial products*

- First Bank to go to Cloud
- First Bank to Contribute to Open Source
- First Bank to Support Technology Community Engagement
- Driving the innovation and technology, not just consumers

Embracing Open Source with strategic purpose, not just the cost!
Agenda

1. Capital One
2. Traditional Batch Analytics
3. The Great Paradigm Shift – Real-Time Analytics
4. What are the Drivers?
5. Apache Flink – Next Generation Big Data Analytics Framework
6. Business Use Case: Customer Activity Event Logs
7. Conclusions
2. Traditional Batch Analytics

1. Traditional Batch Analytics Architecture
2. What is CSAD Cycle?
3. Limitations of Traditional Approach
2.1 Traditional Batch Analytics

- Operation Store
- ETL
- Warehouse
- Sandbox
- Datamarts

Actions based on Insights
2.2 What is CSAD Cycle?

- Application generates data that is Captured into operational store
- Periodically move the data (typically daily) to some data processing platform and run ETL to clean, transform, enrich data
- Load the data into various places for various uses such as Warehouse, OLAP cubes, Marts
- Use Analytics Tools such as R, SAS, SQL, or Dashboard/Reporting tools to find insights
- Decide what actions can be implemented based on the insights
2.3 Limitations of Traditional Batch Analytics

- **Time-To-Insight** is long, several days
- Spend **several days** just to get the right data in right place
- Not suited for today's business practices
- This model has not changed even after Big Data revolution!
1. Capital One
2. Traditional Batch Analytics
3. The Great Paradigm Shift – Real-Time Analytics
4. What are the Drivers?
5. Apache Flink – Next Generation Big Data Analytics Framework
6. Business Use Case: Customer Activity Event Logs
7. Conclusions
3. The Great Paradigm Shift – Real-Time Analytics

1. What is Fast Data and how is it different from Big Data?
2. What is Real-Time v/s Batch – explained
3. What is Real-Time Analytics?
4. Some Real-Time Use Cases
3.1 What is Fast Data?

- **Fast Data** is a new buzzword that is slowly overtaking Big Data.
- Big Data is characterized by 3 V (Volume, Variety, and Velocity). Much of the last decade with Hadoop is focused on storing and processing large volumes of data in batch-oriented fashion.
- **Fast Data** is characterized by processing of large amounts of data coming at **High Speed** that needs to be processed continuously and acted upon in real-time.
- Real-Time data processing is characterized by **Unbounded Data**.
- **High-Speed** and **Low-Latency** is name of the game!
- Depending upon use case, sometimes Latency is less important than semantics and capabilities.
3.2 Real-Time v/s Batch – Water Heater

- **Batch Water Heater**
 - Collect water into the tank
 - Heat the water in the tank (process)
 - Supply water **after the water is heated**
 - Wait till the **whole batch** to heat to desired level
 - Heating may be continuous, but the supply is batch

Store - Process - Serve Model
3.2 Real-Time v/s Batch – Water Heater

Real-Time Water Heater
- Heats the water on-the-fly
- No Need to wait for hot water (low-latency)
- Capacity of heater to match the volume and velocity of flow
3.3 Real-Time Analytics

- **Real-Time Analytics** aims to reduce the traditional CSAD cycles to minimum, **few seconds**, sometimes **sub-second**.

- **Problems with traditional Batch Analytics:**
 - Old data, often **stale**
 - Too slow for fast paced world
 - Need to act sooner, sometimes instantly based on customer behavior

- **Real-Time Analytics** will address these issue associated with Batch Oriented Traditional Analytics
3.4 Real-Time Analytics – Use Cases

Use Cases From Financial World

➢ Real-Time Fraud Prevention
 - Detect fraudulent transaction on the fly rather than after the transaction is approved

➢ Second-Look of duplicate transaction
 - Point of Sales Error, Duplicate Charges detected before you leave the store!

➢ Real-Time CLIP Decision
 - Credit Limit Increase on-the-fly when a transaction pushes above the limits

➢ Real-Time Targeted offers
 - Special offers pushed to user based on users real-time information location, status and earlier actions.

➢ Real-Time Customer Assistant
 - Detect what customer is trying to do and intervene in real-time

➢ Real-Time Shopping Advice
3.4 Real-Time Analytics – Use Cases

Other Use Cases

- **Internet of Things (IoT)**
 - Streaming sensor data analyzed real-time and acted-upon

- **Real-Time System Monitoring and Failure Prevention**
 - Failure Never Happen Suddenly – There are early warnings!

- **Connected Automobiles**
 - Airbus has 10000 sensors
 - Constant Monitoring and feedback. Continuous Learning of driver’s behavior

- **Health Monitoring Medical Devices**
Agenda

1. Capital One
2. Traditional Batch Analytics
3. The Great Paradigm Shift – Real-Time Analytics
4. What are the Drivers?
5. Apache Flink – Next Generation Big Data Analytics Framework
6. Business Use Case: Customer Activity Event Logs
7. Conclusions
4. What are the Drivers?

1. Business Drivers
 - Business Environment became very competitive
 - Need to act quickly for fast changing market place & consumer behavior

2. Technology Drivers
 - New Technologies enabling possibilities that were not present earlier

3. Social Behaviors
 - Consumers wants and expectations are changing fast
 - Businesses need to react to their expectations.

4. New Industries and New Use Cases
 - IoT - Internet of Things
 - Connected Automobiles
4.1 Business Drivers

- Business Environment has became very competitive
- Need to act quickly for fast changing market place & consumer behavior
- Customer Expectations
4.2 Technology Driver

- Legacy Big Data (Hadoop) solely focused on Batch Oriented Data Warehousing.
 - More Data (Volume)
 - Enabled More Types of Data (Variety)
 - More Speed (Velocity)
 - Did not change traditional CSAD cycle!

- Advancement in Big Data and Fast data is fueling a new paradigm shift
 - Apache Storm started the trend
 - Apache Spark paved the way
 - Apache Flink is taking Real-Time processing to whole new level
 - True Real-Time Stream processing (event-at-time) at scale
 - High-Performance
 - Distributed
 - Fault-Tolerant
4.2 Technology Drivers

- New Generation of Technologies such as Apache Flink can deliver **Analytics** and **Business Intelligence** in real-time.
- Businesses Need To React **Quickly** for real-world events. Can not wait for long CSAD Cycles.
- Data is becoming **obsolete** as fast as it is generated.
- **Fast Data** is like **Fast Food** : consume it quickly or it will be **stale**.
4.3 Social Trends

Oral-B®
PRO 5000 SmartSeries
Real-Time Feedback.
Superior Clean.*
4.4 New Industries and New Use Cases

• **Internet of Things (IOT) and Sensor Generated Data**
 – Every Device Is A Smart Device
 – Home Appliances

• **Connect Automobile**
 – Boeing Aircraft has 10000 sensors constantly sending the data
 – Passenger Cars are Data Generators in way that was seen never before!
4.3 Social Trends

- We all live in the world of instant gratification!
- Spread of Smartphones are raising expectations from users
 - I want everything!! and I want it now!!
- Even a simple query may need to process tons of data
 - Think about Google Translate on a smart phone!
- Emergence of Powerful Smart Phones and Mobile Computing
 - We want Everything! We Want it Now!!
Agenda

1. Capital One
2. Traditional Batch Analytics
3. The Great Paradigm Shift – Real-Time Analytics
4. What are the Drivers?
5. Apache Flink – Next Generation Big Data Analytics Framework
6. Business Use Case: Customer Activity Event Logs
7. Conclusions
5. Apache Flink – Next Generation Big Data Analytics Framework

1. What is Apache Flink
2. Flink – Next Generation Analytics Framework
3. Flink Stack
5.1 Apache Flink as the Next Generation of Big Data Analytics

<table>
<thead>
<tr>
<th>✓ Batch</th>
<th>✓ Batch</th>
<th>✓ Batch</th>
<th>✓ Hybrid (Streaming + Batch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Interactive</td>
<td>✓ Interactive</td>
<td>✓ Interactive</td>
<td>✓ Interactive</td>
</tr>
<tr>
<td>✓ Near-Real Time Streaming</td>
<td>✓ Real-Time Streaming</td>
<td>✓ Native Iterative processing</td>
<td>✓ Native Iterative processing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MapReduce</th>
<th>Direct Acyclic Graphs (DAG) Dataflows</th>
<th>RDD: Resilient Distributed Datasets</th>
<th>Cyclic Dataflows</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>1st Generation (1G)</th>
<th>2nd Generation (2G)</th>
<th>3rd Generation (3G)</th>
<th>4th Generation (4G)</th>
</tr>
</thead>
</table>
5. Apache Flink as the Next Generation of Big Data Analytics

Apache Flink’s **original vision** was getting the best from both worlds: MPP Technology and Hadoop MapReduce Technologies:

- **Declarativity**
- **Query optimization**
- **Efficient parallel in-memory and out-of-core algorithms**

- **Real-Time Streaming**
- **Iterations**
- **Memory Management**
- **Advanced Dataflows**
- **General APIs**

- **Massive scale-out**
- **User Defined Functions**
- **Complex data types**
- **Schema on read**

Draws on concepts from

MPP Database Technology

Draws on concepts from

Hadoop MapReduce Technology
Agenda

1. Capital One
2. Traditional Batch Analytics
3. The Great Paradigm Shift – Real-Time Analytics
4. What are the Drivers?
5. Apache Flink – Next Generation Big Data Analytics Framework
6. Business Use Case: Customer Activity Event Logs
7. Conclusions
6. Business Use Case: Customer Activity Event Logs

1. Customer Activity Log (CAL) Events
2. CAL Analytics Architecture
3. Real-Time Analytics with CAL Data
4. Implementation Details
5. Generic Pattern of Streaming Analytics Architecture
6.1 Business Use Case – Customer Activity Log Events

- Capital One provides many digital platforms for its customers for accomplishing tasks online that were traditionally done manually.
- This is more efficient way to support our customers for their needs and at the same time provides better customer experience.
- It is critical that we make sure our digital platforms are working as intended and detect any issues fast enough to remedy them.
- Customer Activity Logs (CAL) are real-world events of customer activity that is a digital footprint of what a customer is doing.
- CAL events are NOT clickstream data.
- CALs we collect provides valuable data that can be leveraged effectively to achieve the goal of providing a great customer experience.
- CALs standardizes customer activity across applications.
6.2 Architecture of Customer Activity Logs

Systems producing data

Apache Nifi -> Apache Kafka

Apache Flink

Realtime Alerts
Time-Window Aggregates
Transformation & Enrichment

Elasticsearch

Alerts Index
Aggregates Index
Events Index

Consistent long-term storage of stream
Alerts file

Batch processing layer

Kibana Dashboard
6.3 Real-Time Analytics with CAL Data

1. Ability To React to Events in Real-Time – Real-Time Alerts
 - Detecting Fraudulent Devices

2. Real-Time Enrichment
 - Adding information from different sources

3. Real-Time Transformation
 - Flattening nested structure for real-time search and index

4. Real-Time Aggregations
 - Sliding Window based aggregations feeding real-time dashboards

5. Real-Time Index and Search

6.4 Implementation Details

1. Infrastructure setup
2. Real-Time Alerts
3. Real-Time Enrichment
4. Real-Time Transformation
5. Real-Time Aggregations
6. Real-Time Index and Search
6.4.1 Implementation Setup

Infrastructure: Created cluster in AWS
 - Simple 3 Node Cluster

Software
 - Hadoop 2.6.0
 - Flink 0.10-SNAPSHOT as a **YARN** Application
 - ElasticSearch v 1.7.2 Installed on the same cluster
 - Kafka cluster (two node) to feed the real-time stream
 - Kibana v 4.1.2

Data Set: Use Mobile Audit Logging data
 - **Mobile Audit Logging Data** – Sanitized all the sensitive fields with one-way SHA1 hashing
 - Use a file as a source to **generate the streaming data** to feed Kafka.
 - **Live feed** is planned to be done soon
6.4.2 Real-Time Alerts

Alert Conditions JSON

```json
{
  "alerts": [
    {
      "name": "Rule1",
      "type": "condition",
      "lookupfile": "",
      "field": "",
      "lookupNbr": "",
      "condition": "event.EVT_TYPE_CD == '5000023'",
      "message": "Login Error Occurred. Please check"
    }
  ]
}
```

AWS SNS

Can be extended to more options

REST API

Or
6.4.3 Enrichment

```
{
  "EVT_ID": "1",
  "EVT_TS": "2015-08-09 18:00:01.274",
  "EVT_TYPE_CD": "92510"
}
```

```
{
  "EVT_ID": "1",
  "EVT_TS": "2015-08-09 18:00:01.274",
  "EVT_TYPE_CD": "92510",
  "EVENT_DESC": "RetrieveBankLocations"
}
```
6.4.4 Transformations

Transforming JSON array element into individual key value pairs using Jackson serializer Jar.

Example Input:

```
{   "event_id":"1",
    "event_details": [ {
        "detail_key": "user_id",
        "detail_value": "rtmprod-client.kdc.capitalone.com"},
        { 
        "detail_key": "httpStatusCode",
        "detail_value": "409"},
    ] }
```

Output after transformation

```
{   "event_id":"1",
    "user_id": "rtmprod-client.kdc.capitalone.com",
    "httpStatusCode": "409"}
```
6.4.5 Window Aggregates - Time-based Sliding Window

Windows Size = 2 sec
Refresh Interval = 1 sec
6.4.5. Real-Time Index and Search

August 9th, 2015, 08:51:46.464 to August 9th, 2015, 23:31:18.909 — by 10 minutes

Selected Fields
- _source

Available Fields
- _source

Popular
- APPN_SYS_CD
- ACTVY_DISP_CD
- Api-Key
- CRTL_ID
- CRTLNT_ID
- Client-Correlation-ID
- EVENT_DESCRIPTION
- EVT_DETLL_TXT
- EVT_ID
- EVT_STAT_CD
- EVT_TS
- EVT_TYPE_CD

Sample results:

- **USER_ID:** rtmpod-client.kdc.capitalone.com
 - **httpStatusCode:** 409
 - **EVT_ID:** 1,209,171,192
 - **EVT_TS:** August 9th, 2015, 18:47:22.053
 - **EVT_TYPE_CD:** 5,000,028
 - **CRTL_ID:** f55244cc-1612-4f0b544-35af11c01a46
 - **WEB_ANALYTCS_CRTLNT_ID:** 66.87.120.202
 - **APPN_SYS_CD:** EAPI
 - **EVT_STAT_CD:** 201,190
 - **CRET_TS:** August 9th, 2015, 18:47:22.062
 - **EVT_DETLL_TXT:**

- **USER_ID:** rtmpod-client.kdc.capitalone.com
 - **httpStatusCode:** 409
 - **EVT_ID:** 1,209,171,192
 - **EVT_TS:** August 9th, 2015, 18:47:22.053
 - **EVT_TYPE_CD:** 5,000,028
 - **CRTL_ID:** f55244cc-1612-4f0b544-35af11c01a46
 - **WEB_ANALYTCS_CRTLNT_ID:** 66.87.120.202
 - **APPN_SYS_CD:** EAPI
 - **EVT_STAT_CD:** 201,190
 - **CRET_TS:** August 9th, 2015, 18:47:22.062
 - **EVT_DETLL_TXT:**
6.5 Generic Pattern Supports A Class of Use Cases

Event Producers
- Apps
- Devices
- Sensors

Event Collector
- Flume
- SpringXD
- Logstash
- Nifi
- Fluentd

Event Broker
- Kafka
- RabbitMQ
- JMS

Event Processor
- Flink
- Spark
- Storm
- Samza

Indexer
- ElasticSearch
- Solr
- Cassandra
- NoSQL DB

Dashboard
- Kibana
- D3
- Custom GUI

Dynamic Models

RealTime Actions

Notifications

Dynamic Models

RealTime Actions

Notifications
6.6 The Analytics Spectrum – Batch & Real-Time

Input Stream -> Depth of Analysis -> Latency

- Quick Aggregations/Alerts
- Intermediate
- Deep Learning

Insights
Agenda

1. Capital One
2. Traditional Batch Analytics
3. The Great Paradigm Shift – Real-Time Analytics
4. What are the Drivers?
5. Apache Flink – Next Generation Big Data Analytics Framework
6. Business Use Case: Customer Activity Event Logs
7. Conclusions
6. Conclusions & Key Takeaways

- Traditional Batch Analytics has long intervals from data to insights and insights to action (CSAD Cycles)
- **Business, Technological and Social Drivers** and demanding time to insights and action in seconds, not days
- New Streaming Technologies such as **Apache Flink** enabling Enterprises to react to events in real-time **as-they-happen**
- Future Competitiveness of Business rests on the ability to capture, move, and process large amounts of data in real-time.
- **Paradigm shift towards Fast Data** is happening across enterprises. It is not an option, it is a must for any business.
- There is still **room for batch analytics**, but lot of todays workloads will move to Streaming Real-Time Analytics and continuous ETL.
Thank You!

Capital One is hiring for multiple locations

http://jobs.capitalone.com and search on: #ilovedata.

Stay In Touch

spalthepu@gmail.com
@SriniPalthebu
https://www.linkedin.com/in/srinipalthebu