Catching Up with Swift

Ash Furrow, Artsy

“What’s the worst
that could happen?”

Agenda

. Swift was needed

. Swift met those needs, mostly
. Writing Swift is great, mostly
. Using Swift in production

. The future of Swift

Swift Was Needed.

Objective-C

»+ From the early 1980’s
» Originally, a C preprocessor
* Then an advantage

- Now a burden

Objective-C

- Moderate use until the mid 2000’s

» Used to make OS X apps
» Niche market

» Then the iPhone happened

Normalized fraction of total hits (%)

TIOBE Programming Community Index Objective-C

11.5 -

11.0 -
10.5 -

10.0 -

9.5]
9.0 -

8.5 1
8.0 -
7.5 -
7.0]

6.5 -
6.0 -

55

5.0 1
4.5 -

4.0 1
3.5

3.0 |
2.5 1

2.0]
1.5 1

1.0 1

0.5 1
0.0 -

2002 2003 26b4 2665 20b6 2667 2068 2db9 26]0 26i1 26]2 2033
Time Source: http://bit.ly/1E2BOCs

Objective-C

- Sudden interest, despite:
- Esoteric syntax
» Unusual memory management

» Arcane knowledge

Objective-C

» Three distinct groups of developers emerged:
- First wave, developers from the 80’s/90’s.
»+ Second wave, OS X developers from the 2000’s.

» Third wave, developers attracted by the iPhone.

Objective-C

- Tension.
» Disenfranchisement.

- Resentment.

“While hardware performance increases over
time, the human capacity to deal with
complexity does not.”

—John Siracusa

Objective-C

- New features were developed by Apple:
- Dot property syntax.

* Closures.

- Decreased boilerplate, headers.

- Automatic reference counting.

» Collection literals.

- Primitive boxing syntax.

“See? Objective-C is getting better! We don’t
need to replace it!”

—First/Second Wave Developers

Language Evolution

» Machine code.

» Assembly.

» Procedural languages (C).

+ Object-oriented languages (C++, Objective-C).

- Virtual machines (Java, C#, Ruby, etc).

Eventually, writing Objective-C will seem

archaic

and relying on it would be a

competitive disadvantage.

"Eventually.”

Replacing your home-grown programming
language takes

decades.

Objective-C

» Could not escape its C roots.

- Apple began work on Swift in 2010.

because
Swift

Objective-C Replacement

» Need:s to...
» abandon all C roots.
+ be memory managed.
- have native unicode strings, native collections.
» be concise.

-+ have named parameters.

Swift Met Those Needs.
Mostly.

Swift

- Announced June 2014.

- Betas released until a 1.0 in the Autumn.

» “Objective-C without the C”

- Mischaracterization.

Swift

Needed to...

@ abandon all C roots.

® be memory managed.

& have native unicode strings, native collections.
8 be concise.

® have named parameters.

Abandon C Roots

» Swift needed to have full Objective-C interop.

» Which means full C interop.

» It’s possible to write Swift to interact with C APIs.
» It’s ugly and discouraged.

-+ Well, I discourage it anyway.

Be Memory Managed

» Objective-C introduced ARC in 2011.
* Replaced garbage collection on OS X.

* Replaced manual memory management on
10S and OS X.

Be Memory Managed

» Automatic Reference Counting.
+ Same as manual memory management.
» Inserted for the developer at compile-time.

* Reasoned about and optimized by compiler.

Reference counting manually Automatic Reference Counting

Be Memory Managed

Pros

- Familiar, stable technology.

» No garbage collector overhead.
Cons

» Can’t detect reference cycles.

Native Unicode Strings

+ Got ‘em.
+ Strings are a Swift struct.
- Bridgeable to Objective-C NSString instances.

 Handle double-byte Unicode characters.

Native Unicode Strings

func YW() -> RACSignal {
return hideAllTheThingsSignal()

¥

func m(snapshottable: Snapshotable) {
expect(snapshottable).to(recordSnapshot())

¥

Native Collections

» Collections are also Swift structs, on generics.
- Array<T>, Dictionary<K, V>, and Set<T>.
» Bridgeable to Objective-C equivalents.

- Concise syntax.

Be Concise

» Subjective, but I'm happy.

+ Simple things are easy.

» Difficult things are possible.

Named Parameters

- Optional(ish)

+ Compiler does weird things for Objective-C interop.

A

Named Parameters

func compare(lhs: String, to rhs: String) -> Bool {
return Lhs == rhs

¥

compare("Hi", to: "Hello")

Writing Swift is Great.
Mostly.

Problem-solving in Swift needs to be

different from

problem-solving with

Objective-C syntax.

IT'S A'SHAME!

Generics

» Objective-C is dynamically typed.
» Swift is statically typed.

- Awesome.

- (ish).

+ Compile-time type safety.

Generics

» Objective-C distinguishes primitives and classes.

. Swift is all like (°c°) 7 1—L

» Arrays, dictionaries, and sets all use generics.

Generics

struct Stack<T> {
private var contents = Array<T>()

mutating func push(value: T) {
contents.append(value)

¥

mutating func pop() -> T {
return contents.removeAtIndex(Q)

¥

var 1sEmpty: Bool {
return countElements(contents) ==

¥

Generics

var i1ntStack = Stack<Int>()
var stringStack = Stack<String>()
var stackStack = Stack<Stack<AnyObject>>()

1ntStack.push(l)
intStack.pop() //

Lazy Swift

» Language-level concept of lazy evaluation.
- Applied automatically to global variables.

- Can be applied to any property.

Lazy Swift

» Assigned on first access.
» Can be overridden by setting before first access.

» Really cool trick with closures.

Lazy Swift

class MyClass {
lazy var name = "Ash Furrow”

¥

MyClass() .name //

let 1nstance = My(Class()
instance.name = "Orta Therox"
instance.name //

Lazy Swift

class My(Class {
lazy var name = "Ash Furrow”
lazy var greeting: String = {
return "Hello, \(self.name)"
1@,
¥

MyClass().greeting //

let 1nstance = My(Class()

instance.name = "Orta Therox"
instance.greeting //
instance.name = "Eloy Durdn”

instance.greeting //

Extending Types

* Objective-C has “categories” to extending
existing classes.

- Swift has “extensions’, instead.

» The work on all types.

Extending Types

extension Int {
var hours: NSTimeInterval {
return NSTimeInterval(3600 * self)

¥
¥

extension NSTimelInterval {
var fromNow: NSDate {
return NSDate(timelIntervalSinceNow: self)
Iy
var ago: NSDate {
return NSDate(timeIntervalSinceNow: -self)

¥
¥

4 .hours.fromNow
4 .hours.ago

Index Paths

» Used to identify cells in a table view.
- Section, row.

- Lots of horrendous code.

» It’s so bad.

- Seriously bad.

Index Paths

1f (indexPath.section == 0) {
1f (indexPath.row == 0) {

} else 1f (1ndexPath.row == 1) {
} else 1f ...

} else 1f (1ndexPath.section == 1) {
1f (i1ndexPath.row == 0) {
} else 1f (1ndexPath.row == 1) {

} else 1f ...
} else 1f ...

1} else 1
if C.

t els

} else
} else 1f

Index Paths

switch (1ndexPath.section, indexPath.row) {
case (0, 0):
case (0, 1):
case (1, 0):
case (1, 1):
default:
//

¥

Index Paths

(1ndexPath.section, indexPath.row) {
case (0@, let row):
//
case (let section, @) where section % 2 ==
//
case (let section, let row) where validate(section):
//
default:
//

¥

Maybe.

Let’s look for new ways to
solve familiar problems.

Let’s ask other communities
how they solve problems.

Swift in Production

ART SY

Open Source by Default

- Decided to develop the app in the open.
» Because why not?
» No, seriously. Why not?
» Helpful for asking for assistance from others.

+ “Here’s my code — what’s wrong?”

github.com/artsy/eidolon

August

» Swift had been out for two months.
- Stability had improved.

+ Swift seemed ready.

September

» The language was great.

- Lots of frustration with tools.

- 3 party tools weren’t ready, or didn’t exist.
» So we built some.

- And contributed to others.

October

* Running behind schedule.
+ “Hard deadline.”
» Explored options to speed up development.

» Brought on an extra developer to help.

“We don’t expect to meet our deadline.”

—My boss

We made

our deadline.
A%

Significant

technical debt.

Problem Solving

- Compiler optimizations segfault the compiler.
- Disable optimizations.
» App is too slow without optimizations.

- Buy faster iPads.

- Tools didn’t exist.

- So we built them.

dWESOITE.

Future of Swift

Safe Bets

» Tools will continue to improve.
- Always a year away from being stable.
» Language will continue to be awesome.

-+ And get more awesomer.

Predictions

» More functional-esque APIs from Apple.
» More functional-esque APIs from the community.
- No Swift-only APIs from Apple, for now.

+ Apple doesn’t want to disenfranchise first/
second wave developers.

Recap

. Swift was needed

. Swift met those needs, mostly
. Writing Swift is great, mostly
. Using Swift in production

. The future of Swift

ThanRs!

YW @ashfurrow

() @ashfurrow
N leanpub.com/yourfirstswiftapp

