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Outline 

l  Problem 

l  Hand tuned assembly 

l  Faster than assembly 

l  All optimization is like this 
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Multi Precision Arithmetic 

l  Core primitive of  
l  Computer algebra 

l  Cryptography 

l  Computational Geometry 

l  Computing billions of digits of Pi 
 

l  Plays a huge role in 
l  Speed 

l  Memory consumption 

l  Algorithm cross over points 
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The GNU Multiple Precision 
Arithmetic Library (GMP) 

GMP is carefully designed to be as fast as possible, both for 
small operands and for huge operands. The speed is achieved by 
using fullwords as the basic arithmetic type, by using fast 
algorithms, with highly optimised assembly code for the most 
common inner loops for a lot of CPUs, and by a general emphasis 
on speed. 

 
https://gmplib.org/ 
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GMP 

l  Performance claims are actually true 
 

l  Actively maintained for new CPUs 
 

l  Dual licensed under LGPLv3 and GPLv2 
 

l  “Gold Standard” of multi precision 
l  Especially on unix 
l  Although it is “known to work” on Windows 
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(some) GMP users  

l  Maple 

l  Mathematica 

l  Sage 
l  Python computer algebra system 

l  Asked to use our “faster than GMP” implementation 

l  Magma 

l  Gnu Compiler Collection 

l  Glasgow Haskell Compiler 
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What does optimized mean? 

 
 
                                                                                           
 

This was generated by the Sun C compiler.  It runs at 22 cycles/
limb on the UltraSPARC-1/2, three cycles slower than 
theoretically possible for optimal code using the same 
algorithm.  For 1-3 limbs, a special loop was generated, which 
causes performance problems in particular for 2 and 3 limbs. 
Ultimately, this should be replaced by hand-written code in the 
same software pipeline style as e.g., addmul_1.asm. 

                                                                                       
sqr_diagonal.asm 
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What should you really do? 

 
 
                                                                                           
 

Instruction classification (as per UltraSPARC-1/2 functional units): 
 8 FM 
 10 FA 
 12 MEM 
 10 ISHIFT + 14 IADDLOG 
 1 BRANCH 
 55 insns totally (plus one mov insn that should be optimized out) 

 
The loop executes 56 instructions in 14 cycles on UltraSPARC-1/2, 
i.e we sustain the peak execution rate of 4 instructions/cycle. 

                                                                                          
addmul_1.asm 
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What is the algorithm? 

 
 
                                                                                           
 

Algorithm: We use eight floating-point multiplies per limb 
product, with the invariant v operand split into four 16-bit pieces, 
and the up operand split into 32-bit pieces.  We sum pairs of 48-
bit partial products using floating-point add, then convert the four 
49-bit product-sums and transfer them to the integer unit. 
 

 
                                                                                          

addmul_1.asm 
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Can you beat that? 

l  They know 
l  The hardware 

l  The best published algorithms 

l  Some algorithms they invented 
 

l  They been at this since at least 1991 
 

l  They think they are ~10-20% from optimal 
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A weakness? 

l  They are general 
l  Good for large or small inputs 

l  Maybe they gave something up 
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Cross Over Points 

l  Frequently, there are multiple algorithms that do the 
same thing… 
 

l  But with different time complexity 
 

l  In real life, constants matter 
 

l  Optimization: pick your algorithm for your input 
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Example: Integer Multiplication 

l  Classical        n^2 
 

l  (1960) Karatsuba      n^1.585 
 

l  (1966) Toom–Cook      n^1.465 
 

l  (1971) Schönhage–Strassen    n log n log log n 
l  GMP: 33,000 to 150,000 decimal digits 

 

l  (2007) Fürer's algorithm     n log n 2^O(log*n) 

l  Watch out at conferences 
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GMP is good at cross over 

l  They didn't leave much on the table 
l  Length check 

l  Jump 
 

l  We're not going to beat them here 
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What problem is GMP solving? 

l  They only do a single multi precision arithmetic operation 
l  +, -, *, / 

l  two operands 
 

l  They are really good at this 
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What do people do with GMP? 

l  Implement algorithms that perform many 
arithmetic operations. 
 

l  They care about the entire set of operations, 
not any one of them. 
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An opening? 

l  What if we try to optimize an algorithm? 
 

l  One that can use single arithmetic 
operations as primitives 
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Root Isolation 

Input:   a polynomial 

Output:   set of isolating intervals 

24 



Root Isolation 

l  Common in science and computer algebra 
 

l  Important enough to be worth optimizing 
 

l  Exact integer coefficients give lots of multi precision arithmetic 
 

l  People usually use GMP to implement it 

25 



The Descartes Method 
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Two choices 

l  Use the structure of root isolation to 
l  Reduce the number of arithmetic operations 

−  It worked for multiplication 
 

l  Reduce the cost of each arithmetic operation 
−  It worked for GMP 
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Reduce number of operations 

l  This is an algorithm problem 
 

l  I'm a systems person 
 

l  So were all of my collaborators 
 

l  It might be possible 
l  We were not going to figure it out 
l  I don't even know the lower bound 
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Reduce the cost of each operation 

l  This is an implementation problem 
 

l  Maybe we can work this one out? 
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Cost of GMP arithmetic 

l  Memory access to get the words 

l  Arithmetic on the words 

l  GMP does not reuse a word across multiple operations 

l  Compilers are unlikely to figure out how to reuse them 
across operations 
l  GMP made sure to saturate the CPU 
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Arithmetic vs Memory 

l  Memory access is more expensive than arithmetic 
l  Pretty much on any CPU you'll get to use 

l  Especially true on the x86 

−  .33 ns for an integer operation 
−  100 ns for a cache miss 

l  Not reducing number of arithmetic operations 

l  Reducing memory access reduces cost per arithmetic 
operation 

l  Only counting operations is for text books  
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Memory Trade Off 

l  Assuming a fixed budget 
l  Money 

l  Power 

l  Area 

l  You can have 
l  Fast memory or 

l  High capacity memory 

l  It won't all be fast 
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x86 Memory Hierarchy 

l  Registers 

l  Cache 
l  Per core cache 

l  Per socket cache 

l  Memory 
l  Local numa node 
l  Remote numa node 

l  Hard Drive 
l  Volatile cache 

l  Persistent storage 
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Tiling 

l  Lots of people know memory access is expensive 

l  Once you load something, do as many computations 
on it as possible 

l  For regularly structure problems, this is called tiling 
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Computational Structure 

l  You don't want to look at a specific algorithm 
l  Detail obscure what needs to be done 

l  Makes it hard to reuse optimizations 

l  You are optimizing a dependency graph 
l  Some nodes might have different costs 

l  Instead of more math, we get to just look at graphs 
l  I don't understand most of the math 
l  I did a lot of the optimization 

 
39 



B(x) 

Major sub-algorithms 
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Tiling: Multi Precision 
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Tile Pairings 
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Cache Tiles 

l  Tile size is based on your cache capacity 
l  size 

l  Associativity 

l  Also allows prefetching 
l  Cache is loaded one “line” at a time 
l  64 bytes on x86 

l  Speedup? 
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Cache Tile Speedup 

l  Basically zero 

l  Did we do something wrong? 

l  Did we at least reduce cache operations 
l  Hardware performance counters 

−  PAPI 
−  CPC 

l  We got something right... 

l  Do we give up?  Any other ideas? 
l  What to measure next? 
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Register Tiles 

l  Maybe there is not enough compute per word for cache tiles 
to help 
l  Even with less cache access, we stall the CPU 

l  What about register tiles? 
l  Another chance to not stall the CPU 

l  Note: we are trying to get what GMP had 
l  Peak IPC 

l  For the problem we are optimizing 

l  Speedup? 
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 Tile Computation 
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Code Generation 

1,000 lines of Perl produces 

e (edge size) Lines of generated C++ 
4 1,124 
6 1,876 
8 3,044 

10 4,724 
12 7,012 
14 10,004 
16 13,796 

Total 41,580 



Processor architectures 

48 

word- cache optimal
processor length registers IEUs assoc. tile- size

Pentium4 32 8 4 8- way 6x6
UltraSPARC III 64 32 2 4- way 8x8

Pentium EE 64 16 4 8- way 12x12
Opteron 64 16 3 4- way 12x12

=> optimal tile size 
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Input polynomials 
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l  Two major costs of root isolation 

l  Tile evaluations 

l  Recursion depth 

l  Random polynomials: random coefficients (same for all 
implementations) few nodes, degrees 100, 200,...,1000. 

l  Chebyshev polynomials: all roots real (and known), many 
nodes, degrees 100,200,...,1000. Hanrot: degree reduction by 
pre-processing x -> sqrt(x) when possible. 

l  Reduced (Chebyshev polynomial of degree n) has degree n/2. 

l  Mignotte polynomials: deep recursion trees, worst case for 
Descartes method, degrees 100,200,...,600. SYNAPS works 
up to degree 80.  
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