
Beating Hand-Tuned Assembly

David Richardson

d.g.richardson@gmail.com

Outline

l  Problem

l  Hand tuned assembly

l  Faster than assembly

l  All optimization is like this

2

Multi Precision Arithmetic

11111111111111

3

Multi Precision Arithmetic

11111111111111 000000000001

4

Multi Precision Arithmetic

11111111111111 000000000001 OVERFLOW

5

Multi Precision Arithmetic

11111111111111 000000000001 OVERFLOW

11111111111111

6

Multi Precision Arithmetic

11111111111111 000000000001 OVERFLOW

11111111111111 000000000001

7

Multi Precision Arithmetic

11111111111111 000000000001 OVERFLOW

11111111111111 000000000001 000000000001 000000000000

8

Multi Precision Arithmetic

l  Core primitive of
l  Computer algebra

l  Cryptography

l  Computational Geometry

l  Computing billions of digits of Pi

l  Plays a huge role in
l  Speed

l  Memory consumption

l  Algorithm cross over points

9

The GNU Multiple Precision
Arithmetic Library (GMP)

GMP is carefully designed to be as fast as possible, both for
small operands and for huge operands. The speed is achieved by
using fullwords as the basic arithmetic type, by using fast
algorithms, with highly optimised assembly code for the most
common inner loops for a lot of CPUs, and by a general emphasis
on speed.

https://gmplib.org/

10

GMP

l  Performance claims are actually true

l  Actively maintained for new CPUs

l  Dual licensed under LGPLv3 and GPLv2

l  “Gold Standard” of multi precision
l  Especially on unix
l  Although it is “known to work” on Windows

11

(some) GMP users

l  Maple

l  Mathematica

l  Sage
l  Python computer algebra system

l  Asked to use our “faster than GMP” implementation

l  Magma

l  Gnu Compiler Collection

l  Glasgow Haskell Compiler

12

What does optimized mean?

This was generated by the Sun C compiler. It runs at 22 cycles/
limb on the UltraSPARC-1/2, three cycles slower than
theoretically possible for optimal code using the same
algorithm. For 1-3 limbs, a special loop was generated, which
causes performance problems in particular for 2 and 3 limbs.
Ultimately, this should be replaced by hand-written code in the
same software pipeline style as e.g., addmul_1.asm.

sqr_diagonal.asm

13

What should you really do?

Instruction classification (as per UltraSPARC-1/2 functional units):
 8 FM
 10 FA
 12 MEM
 10 ISHIFT + 14 IADDLOG
 1 BRANCH
 55 insns totally (plus one mov insn that should be optimized out)

The loop executes 56 instructions in 14 cycles on UltraSPARC-1/2,
i.e we sustain the peak execution rate of 4 instructions/cycle.

addmul_1.asm

14

What is the algorithm?

Algorithm: We use eight floating-point multiplies per limb
product, with the invariant v operand split into four 16-bit pieces,
and the up operand split into 32-bit pieces. We sum pairs of 48-
bit partial products using floating-point add, then convert the four
49-bit product-sums and transfer them to the integer unit.

addmul_1.asm

15

Can you beat that?

l  They know
l  The hardware

l  The best published algorithms

l  Some algorithms they invented

l  They been at this since at least 1991

l  They think they are ~10-20% from optimal

16

A weakness?

l  They are general
l  Good for large or small inputs

l  Maybe they gave something up

17

Cross Over Points

l  Frequently, there are multiple algorithms that do the
same thing…

l  But with different time complexity

l  In real life, constants matter

l  Optimization: pick your algorithm for your input

18

Example: Integer Multiplication

l  Classical n^2

l  (1960) Karatsuba n^1.585

l  (1966) Toom–Cook n^1.465

l  (1971) Schönhage–Strassen n log n log log n
l  GMP: 33,000 to 150,000 decimal digits

l  (2007) Fürer's algorithm n log n 2^O(log*n)

l  Watch out at conferences

19

GMP is good at cross over

l  They didn't leave much on the table
l  Length check

l  Jump

l  We're not going to beat them here

20

What problem is GMP solving?

l  They only do a single multi precision arithmetic operation
l  +, -, *, /

l  two operands

l  They are really good at this

21

What do people do with GMP?

l  Implement algorithms that perform many
arithmetic operations.

l  They care about the entire set of operations,
not any one of them.

22

An opening?

l  What if we try to optimize an algorithm?

l  One that can use single arithmetic
operations as primitives

23

Root Isolation

Input: a polynomial

Output: set of isolating intervals

24

Root Isolation

l  Common in science and computer algebra

l  Important enough to be worth optimizing

l  Exact integer coefficients give lots of multi precision arithmetic

l  People usually use GMP to implement it

25

The Descartes Method

[0, 1)

[0, 0.5) [0.5, 1)

[0, 0.25) [0.25, 0.5)

[0.125, 0.5)

26

[0, 1)

[0, 0.5) [0.5, 1)

[0, 0.25) [0.25, 0.5)

[0.125, 0.5)

[0, 1)

[0, 0.5) [0.5, 1)

[0, 0.25) [0.25, 0.5)

[0.125, 0.5)

Many roots

The Descartes Method

27

[0, 1)

[0, 0.5) [0.5, 1)

[0, 0.25) [0.25, 0.5)

[0.125, 0.5)

[0, 1)

[0, 0.5) [0.5, 1)

[0, 0.25) [0.25, 0.5)

[0.125, 0.5)

Many roots

[0, 1)

[0, 0.5) [0.5, 1)

[0, 0.25) [0.25, 0.5)

[0.125, 0.5)

One root

The Descartes Method

28

[0, 1)

[0, 0.5) [0.5, 1)

[0, 0.25) [0.25, 0.5)

[0.125, 0.5)

[0, 1)

[0, 0.5) [0.5, 1)

[0, 0.25) [0.25, 0.5)

[0.125, 0.5)

Many roots

[0, 1)

[0, 0.5) [0.5, 1)

[0, 0.25) [0.25, 0.5)

[0.125, 0.5)

One root

[0, 1)

[0, 0.5) [0.5, 1)

[0, 0.25) [0.25, 0.5)

[0.125, 0.5)

Three Taylor Shifts
or

One de Casteljau

The Descartes Method

29

[0, 1)

[0, 0.5) [0.5, 1)

[0, 0.25) [0.25, 0.5)

[0.125, 0.5)

[0, 1)

[0, 0.5) [0.5, 1)

[0, 0.25) [0.25, 0.5)

[0.125, 0.5)

Many roots

[0, 1)

[0, 0.5) [0.5, 1)

[0, 0.25) [0.25, 0.5)

[0.125, 0.5)

One root

[0, 1)

[0, 0.5) [0.5, 1)

[0, 0.25) [0.25, 0.5)

[0.125, 0.5)

Three Taylor Shifts
or

One de Casteljau

(GMP)

The Descartes Method

30

Two choices

l  Use the structure of root isolation to
l  Reduce the number of arithmetic operations

−  It worked for multiplication

l  Reduce the cost of each arithmetic operation
−  It worked for GMP

31

Reduce number of operations

l  This is an algorithm problem

l  I'm a systems person

l  So were all of my collaborators

l  It might be possible
l  We were not going to figure it out
l  I don't even know the lower bound

32

Reduce the cost of each operation

l  This is an implementation problem

l  Maybe we can work this one out?

33

Cost of GMP arithmetic

l  Memory access to get the words

l  Arithmetic on the words

l  GMP does not reuse a word across multiple operations

l  Compilers are unlikely to figure out how to reuse them
across operations
l  GMP made sure to saturate the CPU

34

Arithmetic vs Memory

l  Memory access is more expensive than arithmetic
l  Pretty much on any CPU you'll get to use

l  Especially true on the x86

−  .33 ns for an integer operation
−  100 ns for a cache miss

l  Not reducing number of arithmetic operations

l  Reducing memory access reduces cost per arithmetic
operation

l  Only counting operations is for text books

35

Memory Trade Off

l  Assuming a fixed budget
l  Money

l  Power

l  Area

l  You can have
l  Fast memory or

l  High capacity memory

l  It won't all be fast

36

x86 Memory Hierarchy

l  Registers

l  Cache
l  Per core cache

l  Per socket cache

l  Memory
l  Local numa node
l  Remote numa node

l  Hard Drive
l  Volatile cache

l  Persistent storage

37

Tiling

l  Lots of people know memory access is expensive

l  Once you load something, do as many computations
on it as possible

l  For regularly structure problems, this is called tiling

38

Computational Structure

l  You don't want to look at a specific algorithm
l  Detail obscure what needs to be done

l  Makes it hard to reuse optimizations

l  You are optimizing a dependency graph
l  Some nodes might have different costs

l  Instead of more math, we get to just look at graphs
l  I don't understand most of the math
l  I did a lot of the optimization

39

B(x)

Major sub-algorithms

40

an-3

0 0 0 0

an

an-1

an-2

Let A(x) = anxn + an-1xn-1 + … + a0

a0

.

.

.

.

B(x) = A(x+1)

Taylor shift by 1 de Casteljau's algorithm

+

+
+

+

+

+
+

+
+
+

+
+
+

++ + ++
++ + +
++ + +

+

+
+
+

+
+
+

+

+
+

+

+
+

+

+

+
+

+
+
+

+
+
+

++ + ++
++ + +
++ + +

+

+
+
+

+
+
+

+

+
+

A(x)

C(x)

Tiling: Multi Precision

41

Tile Pairings

42

Cache Tiles

l  Tile size is based on your cache capacity
l  size

l  Associativity

l  Also allows prefetching
l  Cache is loaded one “line” at a time
l  64 bytes on x86

l  Speedup?

43

Cache Tile Speedup

l  Basically zero

l  Did we do something wrong?

l  Did we at least reduce cache operations
l  Hardware performance counters

−  PAPI
−  CPC

l  We got something right...

l  Do we give up? Any other ideas?
l  What to measure next?

44

Register Tiles

l  Maybe there is not enough compute per word for cache tiles
to help
l  Even with less cache access, we stall the CPU

l  What about register tiles?
l  Another chance to not stall the CPU

l  Note: we are trying to get what GMP had
l  Peak IPC

l  For the problem we are optimizing

l  Speedup?

45

 Tile Computation

46

47

Code Generation

1,000 lines of Perl produces

e (edge size) Lines of generated C++
4 1,124
6 1,876
8 3,044

10 4,724
12 7,012
14 10,004
16 13,796

Total 41,580

Processor architectures

48

word- cache optimal
processor length registers IEUs assoc. tile- size

Pentium4 32 8 4 8- way 6x6
UltraSPARC III 64 32 2 4- way 8x8

Pentium EE 64 16 4 8- way 12x12
Opteron 64 16 3 4- way 12x12

=> optimal tile size

49

50

51
51

Input polynomials

52

l  Two major costs of root isolation

l  Tile evaluations

l  Recursion depth

l  Random polynomials: random coefficients (same for all
implementations) few nodes, degrees 100, 200,...,1000.

l  Chebyshev polynomials: all roots real (and known), many
nodes, degrees 100,200,...,1000. Hanrot: degree reduction by
pre-processing x -> sqrt(x) when possible.

l  Reduced (Chebyshev polynomial of degree n) has degree n/2.

l  Mignotte polynomials: deep recursion trees, worst case for
Descartes method, degrees 100,200,...,600. SYNAPS works
up to degree 80.

53 53

54

Publications

55

Jeremy R. Johnson, Werner Krandick, Anatole D. Ruslanov.
Architecture-aware classical Taylor shift by 1,
Proceedings of the 2005 international symposium on
Symbolic and algebraic computation

Jeremy R. Johnson, Werner Krandick, Kevin M. Lynch,
David G. Richardson, and Anatole D. Ruslanov. High-
Performance Implementations of the Descartes Method,
Proceedings of the 2006 International Symposium on
Symbolic and Algebraic Computation.

