
Distributed Scheduling
with Apache Mesos in the
Cloud
PhillyETE - April, 2015
Diptanu Gon Choudhury
@diptanu

Who am I?

● Distributed Systems/Infrastructure Engineer
in the Platform Engineering Group
○ Design and develop resilient highly available

services
○ IPC, Service Discovery, Application Lifecycle

● Senior Consultant at ThoughtWorks Europe
● OpenMRS/RapidSMS/ICT4D contributor

A word about Netflix

Just the stats
● 16 years
● < 2000 employees
● 50+ million users
● 5 * 10^9 hours/quarter
● Freedom and Responsibility Culture

The Titan Framework

A globally distributed resource scheduler which
offers compute resources as a service

Guiding Principles

Design for
● Native to the public clouds
● Availability
● Reliability
● Responsiveness
● Continuous Delivery
● Pushing to production faster

Guiding Principles

● Being able to sleep at night even when there
are partial failures.

● Availability over Consistency at a higher
level

● Ability for teams to fit in their domain specific
needs

AZ AZ AZ

Region

Active-Active Architecture

Current Deployment Pipeline

Bakery

The Base AMI

Need for a Distributed Scheduler

● ASGs are great for web services but for
processes whose life cycle are controlled via
events we needed something more flexible

● Cluster Management across multiple
geographies

● Faster turnaround from development to
production

Need for a Distributed Scheduler

● A runtime for polyglot development
● Tighter Integration with services like Atlas,

Scryer etc

We are not alone in the woods

● Google’s Borg and Kubernetes
● Twitter’s Aurora
● Soundcloud’s Harpoon
● Facebook’s tupperware
● Mesosphere’s Marathon

Why did we write Titan

● We wanted a cloud native distributed
scheduler

● Multi Geography from the get-go
● A meta scheduler which can support domain

specific scheduling needs
○ Work Flow systems for batch processing workloads
○ Event driven systems
○ Resource Allocators for Samza, Spark, etc

● Persistent Volumes and Volume
Management

● Scaling rules based on metrics published by
the kernel

● Levers for SREs to do region failovers and
shape traffic globally

Why did we write Titan

Compute Resources as a service
{
 “name”: “rocker”,
 “applicationName”: “nf-rocker”,
 “version”: “1.06”,
 “location”: “dc1:20,us-west-2:dc2:40,dc5:60”,
 “cpus”: 4,
 “memory”: 3200,
 “disk”: 40,
 “ports”: 2,
 “restartOnFailure”: true,
“numRetries”: 10,
“restartOnSuccess”: false
}

Things Titan doesn’t solve

● Service Discovery
● Distributed Tracing
● Naming Service

Building blocks

● A resource allocator
● Packaging and isolation of processes
● Scheduler
● Distribution of artifacts
● Replication across multiple geographies
● AutoScalers

Resource Allocator

● Scale to 10s of thousands of servers in a
single fault domain

● Does one thing really well
● Ability to define custom resources
● Ability to write flexible schedulers
● Battle tested

Mesos

How we use Mesos

● Provides discovery of resources
● We have written a scheduler called Fenzo
● An API to launch tasks
● Allows writing executors to control the

lifecycle of a task
● A mechanism to send messages

Packaging and Isolation

● We love Immutable Infrastructure
● Artifacts of applications after every build

contains the runtime
● Flexible process isolation using cgroups and

namespaces
● Good tooling and distribution mechanism

Docker

Building Containers

● Lots of tutorials around docker helped our
engineers to pick the technology very easily

● Developers and build infrastructure uses the
Docker cli to create containers.

● The docker-java plugin allows developers to
think about their application as a standalone
process

Volume Management

● ZFS on linux for creating volumes
● Allows us to clone, snapshot and move

around volumes
● The zfs toolset is very rich
● Hoping for a better libzfs

Networking

● In AWS EC2 classic containers use the
global network namespace

● Ports are allocated to containers via Mesos
● In AWS VPC, we can allocate an IP address

per container via ENIs

Logging

● Logging agent on every host to allows users
to stream logs

● Archive logs to S3
● Every container gets a volume for logging

Monitoring

● We push metrics published by the kernel to
Atlas

● The scheduler gets a stream of metrics from
every container to make scheduling
decisions

● Use the cgroup notification API to alert users
when a task is killed

Scheduler

● We have a pluggable scheduler called
Fenzo

● Solves the problem of matching resources
with tasks that are queued.

Scheduler

● Remembers the cluster state
○ Efficient bin-packing
○ Helps with Auto Scaling
○ Allows us to do things like reserve instances for

specific type of workloads

Auto Scaling

● A must need for running on the cloud
● Two levels of scaling

○ Scaling of underlying resources to match the
demands of processes

○ Scaling the applications based on metrics to match
SLAs

● Titan adjusts the size of the fleet to have
enough compute resources to run all the
tasks

● Autoscaling Providers are pluggable

Reactive Auto Scaling

Predictive Autoscaling

● Historical data to predict the size of clusters
of individual applications

● Linear Regression models for predicting
near real time cluster sizes

Bin Packing for efficient Autoscaling

16 CPUs 16 CPUs 16 CPUs

Service A Batch Job B

Batch Job C

Node A Node B Node C

Service A

Service A

Service A

Long Running Service

Short Lived Batch Process

Short Lived Batch Process

Bin Packing for efficient Autoscaling

16 CPUs 16 CPUs 16 CPUs

Service A

Node A Node B Node C

Scale
Down

Mesos Framework

● Master Slave model with leader election for
redundancy

● A single Mesos Framework per fault domain
● We currently use Zookeeper but moving to

Raft
● Resilient to failures of underlying data store

Globally Distributed

● Each geography has multiple fault domains
● Single scheduler and API in each fault

domain.

Globally Distributed

● All job specifications are replicated across all
fault domains across all geographies

● Heart beats across all fault domains to
detect failures

● Centralized control plane

Apollo Creed Dagobah Meson SamzaSpinnaker

Mesos

Titan

Future

● More robust scheduling decisions
● Optimize the host OS for running containers
● More monitoring

Questions?

