Distributed Scheduling

with Apache Mesos In the
Cloud

PhillyETE - April, 2015
Diptanu Gon Choudhury
@diptanu



Who am |I?

e Distributed Systems/Infrastructure Engineer
in the Platform Engineering Group

o Design and develop resilient highly available
services

o |PC, Service Discovery, Application Lifecycle
e Senior Consultant at ThoughtWorks Europe

e OpenMRS/RapidSMS/ICT4D contributor



A word about

Just the stats

16 years

< 2000 employees

50+ million users

5 * 1079 hours/quarter

Freedom and Responsibility Culture



The Titan Framework

A globally distributed resource scheduler which
offers compute resources as a service



Guiding Principles

Design for

Native to the public clouds
Availability

Reliability
Responsiveness
Continuous Delivery

®
®
®
®
®
e Pushing to production faster



Guiding Principles

e Being able to sleep at night even when there
are partial failures.

e Availability over Consistency at a higher
level

e Ability for teams to fit in their domain specific
needs



Active-Active Architecture




Current Deployment Pipeline

Q git—— st AR




The Base AMI

Base AMI

Foundation Image




Need for a Distributed Scheduler

e ASGs are great for web services but for
processes whose life cycle are controlled via
events we needed something more flexible

e Cluster Management across multiple
geographies

e Faster turnaround from development to
production



Need for a Distributed Scheduler

e A runtime for polyglot development
e Tighter Integration with services like Atlas,
Scryer etc



We are not alone in the woods

Google’s Borg and Kubernetes
Twitter's Aurora

Soundcloud’s Harpoon
Facebook's tupperware
Mesosphere’s Marathon



Why did we write Titan

e \Ne wanted a cloud native distributed
scheduler

e Multi Geography from the get-go

e A meta scheduler which can support domain

specific scheduling needs

o Work Flow systems for batch processing workloads
o Event driven systems

o Resource Allocators for Samza, Spark, etc



Why did we write Titan

e Persistent Volumes and Volume
Management

e Scaling rules based on metrics published by
the kernel

e Levers for SREs to do region failovers and
shape traffic globally



Compute Resources as a service

{

“‘name”: “rocker”,
“applicationName”: “nf-rocker”,
“version”: “1.06”,
“location”: “dc1:20,us-west-2:dc2:40,dc5:607,
“cpus”: 4,
“memory”: 3200,
“disk™: 40,
“ports”: 2,
“restartOnFailure”: true,
‘numRetries”: 10,
“restartOnSuccess”: false

}



Things Titan doesn’t solve

e Service Discovery
e Distributed Tracing
e Naming Service



Building blocks

A resource allocator

Packaging and isolation of processes
Scheduler

Distribution of artifacts

Replication across multiple geographies
AutoScalers



Resource Allocator

e Scale to 10s of thousands of servers in a
single fault domain

Does one thing really well

Ability to define custom resources

Ability to write flexible schedulers

Battle tested



Mesos

™

MESOS

Apache

'\/\/\
INA/\/ N
AV \/\4
A/ \/ \4




How we use Mesos

Provides discovery of resources

We have written a scheduler called Fenzo
An API to launch tasks

Allows writing executors to control the
lifecycle of a task

e A mechanism to send messages



Packaging and Isolation

e \We love Immutable Infrastructure

e Artifacts of applications after every build
contains the runtime

e Flexible process isolation using cgroups and
namespaces

e (Good tooling and distribution mechanism



NETFLIX



Building Containers

Lots of tutorials around docker helped our
engineers to pick the technology very easily
Developers and build infrastructure uses the
Docker cli to create containers.

The docker-java plugin allows developers to
think about their application as a standalone
process



Volume Management

e /ZFS on linux for creating volumes

e Allows us to clone, snapshot and move
around volumes

e The zfs toolset is very rich

e Hoping for a better libzfs



Networking

e [n AWS EC2 classic containers use the
global network namespace

e Ports are allocated to containers via Mesos

e [n AWS VPC, we can allocate an |IP address
per container via ENIs



Logging

e L ogging agent on every host to allows users
to stream logs

e Archive logs to S3

e Every container gets a volume for logging



Monitoring

e \We push metrics published by the kernel to
Atlas

e The scheduler gets a stream of metrics from
every container to make scheduling
decisions

e Use the cgroup notification API to alert users
when a task is killed



Scheduler

e \We have a pluggable scheduler called

Fenzo
e Solves the problem of matching resources
with tasks that are queued.



Scheduler

e Remembers the cluster state
o Efficient bin-packing
o Helps with Auto Scaling
o Allows us to do things like reserve instances for
specific type of workloads



Auto Scaling

e A must need for running on the cloud
e Two levels of scaling

o Scaling of underlying resources to match the
demands of processes

o Scaling the applications based on metrics to match
SLASs



Reactive Auto Scaling

e Titan adjusts the size of the fleet to have
enough compute resources to run all the

tasks
e Autoscaling Providers are pluggable



Predictive Autoscaling

e Historical data to predict the size of clusters
of individual applications

e Linear Regression models for predicting
near real time cluster sizes



Bin Packing for efficient Autoscaling

Node A Node B Node C

Batch Job B
Batch Job C

16 CPUs 16 CPUs 16 CPUs

Long Running Service
Short Lived Batch Process
Short Lived Batch Process



Bin Packing for efficient Autoscaling

Node A Node B Node C

v
Scale
. Down

16 CPUs 16 CPUs 16 CPUs




Mesos Framework

Master Slave model with leader election for
redundancy

A single Mesos Framework per fault domain
We currently use Zookeeper but moving to
Raft

Resilient to failures of underlying data store



Globally Distributed

e Each geography has multiple fault domains
e Single scheduler and API in each fault
domain.



Globally Distributed

e All job specifications are replicated across all
fault domains across all geographies

e Heart beats across all fault domains to
detect failures

e Centralized control plane



Apollo Creed Dagobah

Amazon EC2 Amazon EC2 Amazon EC2




Future

e More robust scheduling decisions
e Optimize the host OS for running containers
e More monitoring



Questions?



