
Distributed ES
with Akka Persistence

Duncan K. DeVore
Typesafe
@ironfish

Outline
1. Introduction
2. CRUD = Pain!
3. What is Event Sourcing?
4. What are Commands?
5. What are Events?
6. What is Akka Persistence?
7. What is Akka Cluster Sharding?
8. Consistency
9. Conclusion

2

Outline
1. Introduction
2. Crud = Pain!
3. What is Event Sourcing?
4. What are Commands?
5. What are Events?
6. What is Akka Persistence?
7. What is Akka Cluster Sharding?
8. Consistency
9. Conclusion

3

It’s a different world
out there

5

Yesterday Today
Single machines Clusters of machines

Single core processors Multicore processors

Expensive RAM Cheap RAM

Expensive disk Cheap disk

Slow networks Fast networks

Few concurrent users Lots of concurrent users

Small data sets Large data sets

Latency in seconds Latency in milliseconds

6

A study by MIT Sloan Management Review and
Capgemini Consulting finds that companies now face a
digital imperative: adopt new technologies effectively or

face competitive obsolescence.
- October 2013

Case and Point

7

8

“In today's world, the demand for distributed systems has exploded.
As customer expectations such as an immediate response, no

failure, and access anywhere increase, companies have come to
realize that distributed computing is the only viable solution.”

- Reactive Application Development (Manning)

Reactive Systems

9

10

“Modern applications must embrace these changes
by incorporating this behavior into their DNA”.
- Reactive Application Development (Manning)

Outline
1. Introduction
2. CRUD = Pain!
3. What is Event Sourcing?
4. What are Commands?
5. What are Events?
6. What is Akka Persistence?
7. What is Akka Cluster Sharding?
8. Consistency
9. Conclusion

11

= pain!
CRUD

13

CRUD =

CRUD
• DTO’s projected off domain

• Aggregate getters expose internal state

• DTO’s different model than domain

• Usually require extensive mapping

• Large # of read method on repositories

• Optimization of queries becomes difficult

• Query objects not equal to data model

• Object model translated to data model

• Impedance mismatch

14

CRUD
• Create, Read, Update & Delete

• Mashup of commands and events

• Infer current state model persistence

• Generally require compound or synthetic keys

• Impede distribution (sharding) due to key complexity

• Requires external solution for auditing

• Typically used with RDBM’s

15

Outline
1. Introduction
2. Crud = Pain!
3. What is Event Sourcing?
4. What are Commands?
5. What are Events?
6. What is Akka Persistence?
7. What is Akka Cluster Sharding?
8. Consistency
9. Conclusion

16

event sourcing?
what is

18

“The majority of business applications today rely on
storing current state in order to process transactions. As a

result in order to track history or implement audit
capabilities additional coding or frameworks are required.”

- Greg Young

Event Sourcing
This was not always the case

• Side-effect of the adoption of RDBMS systems

• High performance, mission critical systems do not do this

• RDBMS’s do not do this internally!

• SCADA (System Control and Data Acquisition) Systems

19

20

“Event sourcing provides a means by which we can
capture the real intent of our users”

- Reactive Application Development (Manning)

Event Sourcing
Historical behavior is captured

• Behavioral by nature

• Convert valid commands into one or more events

• Current state is not persisted

• Current state is derived

• Append only store

• Simple key structure

• Designed for distribution

21

22

“This pattern can simplify tasks in complex domains
by avoiding the requirement to synchronize the data

model and the business domain”
- Reactive Application Development (Manning)

commands?
what are

24

command | kǝ`mand |
• [reporting verb] give an authoritative order: [with obj.

and infinitive]

Commands
Commands are about behavior rather than data
centricity. This leads to a more true implementation of
DDD.
Commands are a request of the system to perform a
task or action. They follow a VerbNoun format, for
example:

25

case class RegisterClient(id: String, . . .)

case class ChangeClientLocale(id: String, expVer: Long, . . .)

Commands
• Commands are imperative
• They are requests to mutate state
• An action one would like to take
• Transfer as messages not DTO’s
• Implies task-based UX

26

Commands
• Conceptually, performing task
• Not data edits, rather behavior
• Can be rejected
• They do not expose internal state
• Greatly simplified repository layer
• Single command can = multiple events

27

Command Handler
In CQRS command handlers are objects that
process commands
• Client sends command in form of a message
• Processed by a command handler
• Commands can be rejected
• If valid, become one or more events

28

Command Handlers
class Client extends PersistentActor {

 . . .

 val receiveCommand: Receive = { //<- process commands

 case cmd: RegisterClient => validateRegistration(cmd) fold (

 f => sender ! f,

 s => persist(Event) { e =>

 state = state.update(e)

 // side effects go here

 . . .

}

29

events?
what are

31

event | i`vent |
noun
• a thing that happens, especially one of importance

Events
Events are Indicative in nature. They serve as a
sign or indication that something has happened.

As such, they are immutable and cannot be
rejected. They follow a NounVerb format, for
example:

32

case class ClientRegistered(id: String, ver: Long, . . .)

case class ClientLocaleChanged(id: String, ver: Long, . . .)

Events
• Atomic by nature

• Record of state change

• VerbNoun implies behavior

• Immutable

• Natural audit log

• Cannot be rejected

33

Canonical Example
One of the best ways to understand event sourcing is to look at
the canonical example, a bank account register.

In a mature business model, the notion of tracking behavior is
quite common. Consider, for example, a bank accounting
system.

• A customer can make deposits

• Write checks

• Make ATM withdrawals

• Transfer monies to other accounts

• Etc.

34

Canonical Example

35

Canonical Example
• We persist each transaction as an independent event

• To calculate the balance, the delta of the current
transaction is applied to the last known value

• We have a verifiable audit log that can be reconciled to
ensure validity

• The current balance at any point can be derived by
replaying all the transactions up to that point

• We have captured the real intent of how the account
holder manages their finances

36

Canonical Example

37

PersistentActor
• Persistent, stateful actor that can persist events to a journal

• Reacts to them in a thread-safe manner

• Can be used to implement both command and event sourcing

• When restarted, journaled messages are replayed

• The actor recovers the internal state from these messages

38

Journal
• Stores the sequence of messages sent to a persistent actor

• Application controls which messages are journaled

• Application controls which messages are not journaled

• The storage backend of a journal is pluggable

• The default journal storage plugin writes to the local filesystem

• Replicated journals are available as Community Plugins

39

http://akka.io/community/

Snapshots
• A snapshot stores a “moment-in-time”

• It is internal state of the actor

• Used for optimizing recovery times

• The storage backend of a snapshot store is pluggable.

• The default snapshot plugin writes to the local filesystem.

• Replicated snapshots are available as Community Plugins

40

http://akka.io/community/

Event Handler (Internal State)
object Client {

 . . .

 private def empty: Client = Client()

 private case class State(c: Client) {

 def update(e: Event): State = e match {

 . . .

 }

}

class Client extends PersistentActor {

 var state = State(empty) //<- mutable state OK!

 . . .

}

41

Event Handler (Persist)
class Client extends PersistentActor {

 . . .

 val receiveCommand: Receive = {

 case cmd: RegisterClient =>

 validateRegistration(cmd) fold (

 f => sender ! f,

 s => persist(s) { e => // <- partial function persist

 state = state.update(e)

 // side effects go here

)

 . . .

}

42

Event Handler (Recover)
class Client extends PersistentActor {

 . . .

 val receiveRecover: Receive = {

 case e: Event => e match {

 case evt: ClientRegistered =>

 state = state.update(evt)

 // there should be no side effects here

 . . .

 }

 case SnapshotOffer(_, snapshot: Client) => state = snapshot

}

43

Outline
1. Introduction
2. CRUD = Pain!
3. What is Event Sourcing?
4. What are Commands?
5. What are Events?
6. What is Akka Persistence?
7. What is Akka Cluster Sharding?
8. Consistency
9. Conclusion

44

akka persistence?
what is

Akka Persistence
• Stateful actors can persist internal state

• Underlying semantics use event sourcing

• Append-only store

• Community plugins

• Supports snapshots

• State recovered by replaying stored events/snapshots

• point-to-point communication with at-least-once message
delivery

• Identity vs state?

46

akka cluster
sharding?

what is

Akka Cluster Sharding
• Stateful actors distribution across several nodes

• One machine is not enough, cluster required

• Naturally elastic

• Naturally resilient

• Actor activation and passivation

• Messages sent to shard not actor

48

Shard Region
• The ShardRegion actor is started on each node in the cluster

• Or group of nodes tagged with a specific role.

• The ShardRegion is created with two specific functions

• Extract the entry identifier

• The shard identifier from incoming messages.

• A shard is a group of entries that will be managed together.

• For the first message in a specific shard

• the ShardRegion request the location of the shard

• from a central coordinator, the ShardCoordinator.

49

Shard Coordinator
• The ShardCoordinator decides (first message)

• which ShardRegion that owns the shard.

• Subsequent messages to the resolved shard

• can be delivered to the target destination

• immediately without involving the ShardCoordinator.

50

Shard Region
 . . .

val clientRegion: ActorRef = ClusterSharding(system).start(

 typeName = Client.shardName,

 entryProps = Some(Client.props),

 idExtractor = Fellow.idExtractor,

 shardResolver = Client.shardResolver)

. . .

val cmd = ChangeClientName(“123”, “Jason”, expVer=4)

clientRegion ! cmd

51

Outline
1. Introduction
2. CRUD = Pain!
3. What is Event Sourcing?
4. What are Commands?
5. What are Events?
6. What is Akka Persistence?
7. What is Akka Cluster Sharding?
8. Consistency
9. Conclusion

52

consistency?
what is

54

consistency | kǝn’sistǝnsē |
noun
• conformity in the application of something, typically

necessary for the sake of logic; accuracy or fairness

55

“Consistency is often taken for granted when designing
traditional monolithic systems as you have tightly

coupled services connected to a centralized database”
- Reactive Application Development (Manning)

Strong Consistency
Monolithic systems default to Strong Consistency as there is only
one path to the data store for a given service and that path is
synchronous in nature.

• All accesses are available to all processes

• All accesses are seen in the same sequential order

In distributed computing, however, this is not the case. By design,
distributed systems are asynchronous and loosely coupled and
rely on patterns such as atomic shared memory systems and
distributed data stores achieve Availability and Partition Tolerance

Therefore, strongly consistent systems are not distributable as a
whole contiguous system as identified by the CAP theorem.

56

http://en.wikipedia.org/wiki/Strong_consistency
http://en.wikipedia.org/wiki/Availability
http://en.wikipedia.org/wiki/Network_partition

CAP Theorem
In Theoretical Computer Science, CAP Theorem, also known as
Brewer's Theorem, states that its impossible in Distributed
Systems to simultaneously provide all three of the following
guarantees:

• Consistency - all nodes see the same data at the same time

• Availability - a guarantee that every request receives a
response about whether successful or not

• Partition Tolerance - the system continues to function
regardless of message failure or partial system failure

57

http://en.wikipedia.org/wiki/Theoretical_computer_science
http://en.wikipedia.org/wiki/Distributed_computing
http://en.wikipedia.org/wiki/Consistency_(database_systems)
http://en.wikipedia.org/wiki/Availability
http://en.wikipedia.org/wiki/Network_partition

CAP Theorem

58

59

“In distributed computing, a system supports a given consistency
model if operations follow specific rules as identified by the model. The
model specifies a contractual agreement between the programmer and

the system, wherein the system guarantees that if the rules are
followed, memory will be consistent and the results will be predictable.”

- Wikipedia

Eventual Consistency
Eventual consistency is a consistency model used in distributed
computing that informally guarantees that, if no new updates are
made to a given data item, eventually all accesses to that item
will return the last updated value.

• Pillar of distributed systems

• Often under the moniker of optimistic replication

• Matured in the early days of mobile computing

60

Eventual Consistency
A system that has achieved eventual consistency is often said to
have converged, or achieved replica convergence.

• While stronger models, like linearizability (Strong
Consistency) are trivially eventually consistent, the converse
does not hold.

• Eventually Consistent services are often classified as as
Basically Available Soft state Eventual consistency semantics
as opposed to a more traditional ACID (Atomicity,
Consistency, Isolation, Durability) guarantees.

61

Causal Consistency
Causal consistency is a stronger consistency model that
ensures that the operations processes in the order expected.

More precisely, partial order over operations is enforced through
metadata.

• If operation A occurs before operation B, then any data center
that sees operation B must see operation A first.

There are three rules that define potential causality.

62

Causal Consistency (3 Rules)
• Thread of Execution: If A and B are two operations in a single

thread of execution, then A -> B if operation A happens before
B.

• Reads-From: If A is a write operation and B is a read
operation that returns the value written by A, then A -> B.

• Transitivity: For operations A, B, and C, if A -> B and B -> C,
then A -> C. Thus the casual relationship between operations
is the transitive closure of the first two rules.

63

conflict resolution?
what is

65

resolution | rezǝ’lōōSHǝn |
noun
• a firm decision to do or not to do something

66

“In order to ensure the convergence of replicated
data, a reconciliation between the distributed copies is
required. This process, often known as [anti-entropy],
requires versioning semantics to as part of the data”

- Wikipedia

Conflict Resolution

67

Conflict Resolution
The recommended way to solve is the problem for the command
side of CQRS, is by embedding into the data structure a simple
metadata attribute, version number.

• Known as Current State Versioning

• The system compares the current state version to the
version on the incoming command

• If they are not equal, the command is rejected

• First writer wins.

68

Conflict Resolution
object Client {

 def requireVersion[C <: EventableCommand]

 (c: Client, cmd: C): Either[ErrorMsg, C] =

 if(cmd.expVer == c.ver) Right(cmd)

 else Left(ErrorMsg(List(“Expected version mismatch”)))

 . . .

}

69

Outline
1. Introduction
2. CRUD = Pain!
3. What is Event Sourcing?
4. What are Commands?
5. What are Events?
6. What is Akka Persistence?
7. What is Akka Cluster Sharding?
8. Consistency
9. Conclusion

70

Reactive Application Development

71

Questions?

Distributed ES
with Akka Persistence

Duncan K. DeVore
Typesafe
@ironfish

