
GC Tuning Confessions
Of A Performance

Engineer

Monica Beckwith
monica@codekaram.com

@mon_beck
www.linkedin.com/in/monicabeckwith

Philly Emerging Tech Conference 2015
April 8th, 2015

mailto:monica@codekaram.com
https://twitter.com/mon_beck
http://www.linkedin.com/in/monicabeckwith

©2015 CodeKaram

About Me

• JVM/GC Performance Engineer/Consultant

• Worked at AMD, Sun, Oracle

• Worked with HotSpot JVM

• Worked with Parallel(Old) GC, G1 GC and CMS
GC

2

©2015 CodeKaram

About Today’s Talk
• A little bit about Performance Engineering

• Insight into Garbage Collectors

• Introduction to a few main GC Algorithms in
OpenJDK HotSpot (ParallelOld GC, CMS GC,
and G1 GC)

• Summary

• GC Tunables
3

©2015 CodeKaram

Performance Engineering
• A performance engineer helps ensure that the system is

designed + implemented to meet the performance
requirements.

• The performance requirements could include the
service level agreements (SLAs) for throughput, latency
and other response time related metrics - also known as
non-functional requirements.

• E.g. Response time (RT) metrics - Average (RT), max
or worst-case RT, 99th percentile RT…

• Let’s talk more about these RTs…

4

©2015 CodeKaram

Performance Engineering -
Response Time Metrics

Average (ms) Minimum (ms)

System1 307.741 7.622

System2 320.778 7.258

System3 321.483 6.432

System4 323.143 7.353

5

©2015 CodeKaram

Performance Engineering -
Response Time Metrics

Average (ms) Number of
GCs

System1 307.741 37353

System2 320.778 34920

System3 321.483 36270

System4 323.143 40636

6

©2015 CodeKaram

Performance Engineering -
Response Time Metrics

Average (ms) Maximum (ms)

System1 307.741 3131.331

System2 320.778 2744.588

System3 321.483 1681.308

System4 323.143 20699.505

7

©2015 CodeKaram

Performance Engineering -
Response Time Metrics

Average (ms) Maximum (ms)

System1 307.741 3131.331

System2 320.778 2744.588

System3 321.483 1681.308

System4 323.143 20699.505

5 full GCs and 10 evacuation failures

8

©2015 CodeKaram

Performance Engineering
• Monitoring, analysis and tuning are a big part of performance

engineering.

• Monitoring utilization - CPU, IO, Memory bandwidth, Java
heap, …

• Analyzing utilization and time spent - GC logs, CPU, memory
and application logs

• Profiling - Application, System, Memory - Java Heap.

• Java/JVM performance engineering includes the study, analysis
and tuning of the Just-in-time (JIT) compiler, the Garbage
Collector (GC) and many a times tuning related to the Java
Development Kit (JDK).

9

©2015 CodeKaram

Insight Into Garbage
Collectors (GCs)

• A GC is an automatic memory management unit.

• An ideal GC is the one that requires minimum footprint
(concurrent CPU or native memory), and provides maximum
throughput while minimizing predictable latency.

• Fun Fact - In reality you will have to tradeoff one (footprint or
latency or throughput) in lieu of the others. A healthy performance
engineering exercise can help you meet or exceed your goals.

• Fun Fact - GC can NOT eliminate your memory leaks!

• Fun Fact - GC (and heap dump) can provide an insight into your
application.

10

©2015 CodeKaram

GC Algorithms in OpenJDK
HotSpot - The Tradeoff

• Throughput and latency are the two main drivers
towards refinement of GC algorithms.

• Fun Fact - Most OpenJDK HotSpot users would
like to increase their (Java) heap space but they
fear full garbage collections.

11

©2015 CodeKaram

GC Algorithms in OpenJDK
HotSpot - Throughput Maximizer
• Throughput has driven us to parallelization of GC worker threads:

• Parallel Collection Threads

• Parallel Concurrent Marking Threads

• Throughput has driven us to generational GCs

• Most objects die young.

• Fast path allocation into “young” generation.

• Age and then promote (fast path again) to “old” generation

• Fun Fact: All GCs in OpenJDK HotSpot are generational.

12

©2015 CodeKaram

GC Algorithms in OpenJDK
HotSpot - Latency Sensitive

• Latency has driven algorithms to no compaction or partial compaction

• Time is of essence, no need to fully compact if free space is still
available!

• Latency has driven algorithms towards concurrency - i.e. running with
the application threads.

• Mostly concurrent mark and sweep (CMS) and concurrent marking
in G1.

• Fun Fact: All GCs in OpenJDK HotSpot fallback to a fully compacting
stop-the-world garbage collection called the “full” GC.

• Tuning can help avoid or postpone full GCs in many cases.

13

©2015 CodeKaram

The Throughput Collector
• ParallelOld is the throughput collector in OpenJDK

HotSpot.

• But, first, what is throughput?

• Throughput is the percentage of time NOT spent in GC :)

• The throughput goal for ParallelOld Collector is 99%.

• That is, all the GC pauses that happen during the life of
the application should account to 1% of the run time.

• How does ParallelOld try to achieve its throughput goal?

14

©2015 CodeKaram

The Throughput Collector -
Java Heap

Eden S0 S1 Old Generation

Young Generation

Allocations Survivors

Tenured

15

©2015 CodeKaram

• An allocation failure results in a stop-the-world young collection.

• The young generation is collected in its entirety i.e. all objects
(dead or alive) are emptied from the eden and S0 spaces.

• After the young collection is complete, the surviving objects
(objects that are live) are moved into S1.

• Objects are aged in the survivor space until ready for promotion

• When the age threshold is met, objects are promoted into the old
generation.

• Allocations and promotions are both fast tracked (lock-free) by
using Thread/Promotion Local Allocation Buffers (TLAB/PLAB)

The Throughput Collector -
Young Collection

16

©2015 CodeKaram

Old Generation

Free Space

Occupied Space

The Throughput Collector -
Contiguous Old Generation

17

©2015 CodeKaram

Old Generation

To-be Promoted Object 1

The Throughput Collector -
Contiguous Old Generation

18

©2015 CodeKaram

Old Generation

Free Space

Occupied Space

The Throughput Collector -
Contiguous Old Generation

19

©2015 CodeKaram

Old Generation

To-be Promoted Object 2

The Throughput Collector -
Contiguous Old Generation

20

©2015 CodeKaram

Old Generation

Free Space

Occupied Space

The Throughput Collector -
Contiguous Old Generation

21

©2015 CodeKaram

Old Generation

To-be Promoted Object 3

The Throughput Collector -
Contiguous Old Generation

22

©2015 CodeKaram

• When the old generation is full, i.e. when the old generation
can’t accept any promotions, it is time to start a full compaction
collection.

• The ParallelOld collector utilized parallel stop-the-world GC
threads to help compact the entire heap.

• The ParallelOld collector achieves compaction via copying and
moving live data.

• After the end of the full collection, only the compacted live data
set of the java application occupies the old generation. The rest
of the space in the old generation is free for future promotions.

The Throughput Collector -
Contiguous Old Generation

23

©2015 CodeKaram

Young
GC

Threads

Java
Application
Threads

Old GC
Threads

Java
Application
Threads

Java
Application
Threads

The Throughput Collector

24

©2015 CodeKaram

The CMS Collector
• Mostly Concurrent Mark & Sweep collector is geared towards latency sensitive

applications.

• The young collections are pretty similar to what you would observe with
ParallelOld GC’s young collection

• The main difference is in the old generation collection.

• An occupancy threshold determines when the mostly concurrent mark and
sweep cycle can start.

• The sweep cycle just reclaims the dead objects and updates a list of free
spaces. Thus, the CMS collector is not a compacting collector.

• This can lead to fragmentation which can lead to promotion failures
which eventually lead to a fallback single-threaded fully compacting
collection.

25

©2015 CodeKaram

The CMS Collector
• The CMS collector has multiple stop-the-world and concurrent phases -

• After the old generation occupied space reaches or crosses the
occupancy threshold, a CMS cycle is initiated.

• Initially, parallel stop-the-world CMS threads help find the GC roots
to start a live object graph.

• Concurrent CMS threads help in marking further live objects (objects
that are reachable by the roots).

• Parallel stop-the-world CMS threads help in making sure that the
final changes to the graph are duly noted.

• Concurrent sweep phase helps in collecting all dead objects and
updating the free list to track the reclaimed spaces.

26

©2015 CodeKaram

The CMS Collector
Young
GC

Threads

Java
Application
Threads

CMS
Initial
Mark

Threads

Java
Application
Threads

Java
Application
Threads

Young
GC

Threads

CMS
Remark
Threads

Java
Application
Threads

Java
Application
Threads

Concurrent
CMS

Threads

Concurrent
CMS

Threads

Concurrent
CMS

Threads

27

©2015 CodeKaram

The CMS Collector -
Contiguous Old Generation

28

Old Generation

Free List

Free Space

Occupied Space

©2015 CodeKaram

Old Generation

To-be Promoted Object 1

The CMS Collector -
Contiguous Old Generation

29

©2015 CodeKaram

Old Generation

Free List

Free Space

Occupied Space

The CMS Collector -
Contiguous Old Generation

30

©2015 CodeKaram

Old Generation

To-be Promoted Object 2

The CMS Collector -
Contiguous Old Generation

31

©2015 CodeKaram

Old Generation

Free List

Free Space

Occupied Space

The CMS Collector -
Contiguous Old Generation

32

©2015 CodeKaram

X

Old Generation

To-be Promoted Object 3

The CMS Collector -
Contiguous Old Generation

33

©2015 CodeKaram

X

Old Generation

To-be Promoted Object 3

The CMS Collector -
Contiguous Old Generation

34

©2015 CodeKaram

X

Old Generation

To-be Promoted Object 3

The CMS Collector -
Contiguous Old Generation

35

©2015 CodeKaram

X

Old Generation

To-be Promoted Object 3

The CMS Collector -
Contiguous Old Generation

36

©2015 CodeKaram

Old Generation

To-be Promoted Object 3

??

The CMS Collector -
Contiguous Old Generation

37

©2015 CodeKaram

Old Generation

To-be Promoted Object 3

Promotion Failure!!

The CMS Collector -
Contiguous Old Generation

38

©2015 CodeKaram

• When CMS just can’t keep up with the promotion
rate

• Your old generation is getting filled before a
concurrent cycle can free up space and
complete.

• Causes - marking threshold is too high, heap too
small, or high application mutation rate

39

The CMS Collector -
Concurrent Mode Failures

©2015 CodeKaram

The Garbage First Collector
• Garbage First (G1) is the newest collector in OpenJDK HotSpot.

• G1 GC is supposed to be a long term replacement of CMS GC.

• G1 GC introduces the concept of regionalized heap.

• The idea is to set a pause time goal which will be used as a hint
by the ergonomics and prediction logic and G1 GC will try to
adjust its generations and number of regions per collections so
as to best meet its pause time goal.

• G1 has multi-staged concurrent marking phase as well as stop
the world collections for young and old generations

40

©2015 CodeKaram

The Garbage First Collector
• Throughput is a secondary consideration for G1. Hence the throughput

goal is to have about 10% of the total time be spent in GC activities.

• G1 GC aims to provide more predictable pause times.

• The G1 GC regionalized heap ensures that the generations don’t have
to be contiguous (as they were in ParallelOld and CMS GCs).

• With regions, G1 just needs to know the limits for each generation and
the pause time goal.

• G1 will add regions as needed from the list of free regions.

• Occupied regions can be eden, survivor, old and humongous (more
on this later).

41

©2015 CodeKaram

The Garbage First Collector
- Regionalized Heap

Eden

Old Old

Eden

Old

Survivor

Humongous

42

©2015 CodeKaram

• For G1 GC, the young generation consists of eden regions and survivor
regions.

• A region is a unit of collection

• The region size is determined at JVM startup (and can be changed if
needed)

• Most allocations are fast path allocations into the eden regions.

• The survivor regions help in aging the objects which are eventually
promoted into the old generation after the age threshold is crossed

• The young generation is resized after every collection based on the
time it took the current collection, the pause time goal and other factors
considered by the prediction logic.

The Garbage First Collector
- The Young Generation

43

©2015 CodeKaram

The Garbage First Collector

Eden

Old Old

Eden

Old

Surv
ivor

E.g.: Current heap configuration -

44

©2015 CodeKaram

The Garbage First Collector

Eden

Old Old

Eden

Old

Surv
ivor

E.g.: During a young collection -

45

©2015 CodeKaram

The Garbage First Collector

Old Old

Old

E.g.: After a young collection -

Sur
vivor

Old

46

©2015 CodeKaram

• For G1 GC, the old generation collection consists of all of the
young regions and a few candidate old regions. Such a
collection is called a mixed collection.

• The GC ergonomics selects the candidate old regions based
on certain thresholds and calculations that help determine
the regions with the most reclaimable space and at the same
time giving consideration to the pause time goal.

• Based on the total number of candidate old regions, the pause
time goal and other collection related thresholds, you could see
more that one mixed collection pause. Thus the old generation
is collected incrementally.

The Garbage First Collector
- The Old Generation

47

©2015 CodeKaram

• In-order to start a mixed collection, the heap occupancy
threshold (also known as the marking threshold) must be
crossed.

• When the marking threshold is crossed, G1 GC initiates
a concurrent marking cycle. The concurrent cycle is
mostly concurrent, except for when marking the roots
and when remarking to make sure all the mutations are
captured appropriately in the object graph.

• During the concurrent marking phase, any garbage-filled
regions are reclaimed as a part of the cleanup phase.

The Garbage First Collector
- The Marking Threshold

48

©2015 CodeKaram

The Garbage First Collector

Old Old

Old

E.g.: Current heap configuration -

Sur
vivor

Old

Eden Eden

Old

49

©2015 CodeKaram

Old Old

Old

E.g.: Reclamation of a garbage-filled region during a
concurrent cleanup phase -

Sur
vivor

Old

Eden Eden

Old

The Garbage First Collector

50

©2015 CodeKaram

Old Old

Old

E.g.: Current heap configuration -

Sur
vivor

Old

Eden Eden

The Garbage First Collector

51

©2015 CodeKaram

Old Old

Old

E.g.: During a mixed collection -

Sur
vivor

Old

Eden Eden

The Garbage First Collector

52

©2015 CodeKaram

Old

E.g.: After a mixed collection -

O
ld

Surv
ivor

Old

The Garbage First Collector

53

©2015 CodeKaram

• Objects >= 50% of G1 region size == Humongous Objects

• These objects are allocated directly into the old generation into
Humongous Regions

• If a humongous object is bigger than a G1 region, then the
humongous regions that contain it have to be contiguous.

• Ideally, humongous objects are few in number and are short
lived.

• Can cause evacuation failures if application allocates a lot
of long-lived humongous objects, since humongous
regions add to the old generation occupancy.

The Garbage First Collector
- Humongous Objects

54

©2015 CodeKaram

• Evacuation failures or promotion failures or to-
space overflow or exhausted all refer to the same
notion.

• When there are no more regions available for
survivors or tenured objects, G1 GC encounters
an evacuation failure.

• An evacuation failure is expensive and the usual
pattern is that if you see a couple of evacuation
failures; full GC will soon follow.

The Garbage First Collector
- Evacuation Failures

55

©2015 CodeKaram

• Make sure your command line is not overloaded - Avoid over-
tuning!

• Try increasing your heap size.

• Check if humongous allocations are the cause of your problem.

• Adjust the marking threshold

• Try increasing your concurrent threads to help reduce the time
for concurrent marking phase.

• If survivor objects are the issue, try increase the
G1ReservePercent

The Garbage First Collector -
Avoiding Evacuation Failures

56

©2015 CodeKaram

What have we learned so far? -
Young Generation & Collections
• Young generation is always collected in its entirety.

• All 3 GCs discussed earlier follow similar mechanism
for young collection.

• The young collections achieve reclamation via
compaction and copying of live objects.

• There are a lot of options for sizing the Eden and
Survivor space optimally and many GCs also have
adaptive sizing and ergonomics for young generation
collections.

57

©2015 CodeKaram

Most Allocations Eden Space
Eden Full? Start Young Collection: Keep Allocating :)

Objects Aged in Survivor Space? Promote: Keep Aging :)

Fast Path

Promotions Fast Path Old Generation

CMS promotes to fitting free space out of a free list.

What have we learned so far? -
Young Generation & Collections

58

©2015 CodeKaram

All 3 GCs vary in the way they collect the old generation:

• For ParallelOld GC, the old generation is reclaimed and
compacted in its entirety

• Luckily, the compaction cost is distributed amongst parallel
garbage collector worker threads.

• Unluckily, the compaction cost depends a lot on the size of
the live data set since at every compaction, the GC is moving
live data around.

• No tuning options other than the generation size adjustment
and age threshold for promotion.

59

What have we learned so far?
- Old Generation & Collections

©2015 CodeKaram

• For CMS GC, the old generation is (mostly) concurrently marked
and swept. Thus the reclamation of dead objects happen in place
and the space is added to a free list of spaces.

• The marking threshold can be tuned adaptively and manually as
well.

• Luckily, CMS GC doesn’t do compaction, hence reclamation is fast.

• Unluckily, a long running Java application with CMS GC is prone to
fragmentation which will eventually result in promotion failures
which can eventually lead to full compacting garbage collection
and sometimes even concurrent mode failures.

• Full compacting GCs are singled threaded in CMS GC.

What have we learned so far?
- Old Generation & Collections

60

©2015 CodeKaram

• For G1 GC, the old generation regions are (mostly) concurrently marked and
an incremental compacting collection helps with optimizing the old generation
collection.

• Luckily, fragmentation is not “untunable” in G1 GC as it is in CMS GC.

• Unluckily, sometimes, you may still encounter promotion/evacuation failures
when G1 GC runs out of regions to copy live objects. Such an evacuation
failure is expensive and can eventually lead to a full compacting GC.

• Full compacting GCs are singled threaded in G1 GC.

• Appropriate tuning of the old generation space and collection can help
avoid evacuation failures and hence keep full GCs at bay.

• G1 GC has multiple tuning options so that the GC can be adapted to your
application needs.

61

What have we learned so far?
- Old Generation & Collections

©2015 CodeKaram

GC Tunables - The
Throughput Collector

Goal:
Only promote objects after you have hazed

them appropriately

aged

Tunables:
Everything related to aging objects and

generation sizing -
NewRatio, (Max)NewSize, SurvivorRatio,

(Max)TenuringThreshold
62

©2015 CodeKaram

GC Tunables - The
Throughput Collector

Things to remember -

• Applications with steady behavior rarely need
AdaptiveSizePolicy to be enabled.

• Overflow gets promoted into the old generation

• Provide larger survivor spaces for long-lived transient data.

• In most cases, young generation sizing has the most effect
on throughput

• Size the young generation to maintain the GC overhead to
less than 5%.

63

©2015 CodeKaram

GC Tunables - The CMS
Collector

Goal:
Only promote objects after you have hazed

them appropriately

aged

Tunables:
Everything related to aging objects and young

generation sizing still applies here.
The concurrent thread counts and marking
threshold are addition tunables for CMS

64

©2015 CodeKaram

GC Tunables - The CMS
Collector

Things to remember -

• Premature promotions are very expensive in CMS and could lead to
fragmentation

• You can reduce the CMS cycle duration by adding more concurrent
threads: ConcGCThreads.

• Remember that this will increase the concurrent overhead.

• You can manually tune the marking threshold (adaptive by default)

• CMSInitiatingOccupancyFraction & UseCMSInitiatingOccupancyOnly
will help fix the marking threshold.

• Note: The threshold is expressed as a percentage of the old generation
occupancy

65

©2015 CodeKaram

GC Tunables - The G1
Collector

Goal:
Get the ergonomics to work for you and

know the defaultsTunables:
• Pause time goal, heap size, max and min

nursery, concurrent and parallel threads
• The marking threshold, number of mixed GCs

after marking, liveness threshold for the old
regions, garbage toleration threshold, max old
regions to be collected per mixed collection

66

©2015 CodeKaram

GC Tunables - The G1
Collector

Things to remember -

• Know your defaults!

• Understand your G1HeapRegionSize - It could be any factor of
two from 1MB to 32MB. G1 strives for 2048 regions.

• Fixing the nursery size (using Xmn) will meddle with the GC
ergonomics.

• Don’t set really aggressive pause time goals - this will increase the
GC overhead.

• Spend time taming your mixed GCs - mixed GCs are incremental
old generation collections

67

©2015 CodeKaram

GC Tunables - The G1
Collector

Things to remember -

• Taming mixed GCs:

• Adjust the marking cycle according to you live data set.

• Adjust you liveness threshold - this is the live occupancy threshold
per region. Any region with liveness beyond this threshold will not
be included in a mixed collection.

• Adjust your garbage toleration threshold - helps G1 not get too
aggressive with mixed collections

• Distribute mixed GC pauses over a number of mixed collections -
adjust your mixed GC count target and change your max old region
threshold percent so that you can limit the old regions per collection

68

©2015 CodeKaram

Further Reading

69

©2015 CodeKaram

Further Reading

70

©2015 CodeKaram

Further Reading
• Jon Masa’s blog: https://blogs.oracle.com/

jonthecollector/entry/our_collectors

• A few of my articles on InfoQ: http://
www.infoq.com/author/Monica-Beckwith

• Presentations: http://www.slideshare.net/
MonicaBeckwith

• Mail archives on hotspot-gc-use@openjdk.java.net
& hotspot-gc-dev@openjdk.java.net

71

http://blogs.oracle.com/jonthecollector/entry/our_collectors
http://www.infoq.com/author/Monica-Beckwith
http://www.slideshare.net/MonicaBeckwith
mailto:hotspot-gc-use@openjdk.java.net
mailto:hotspot-gc-dev@openjdk.java.net

