Chris Richardson

Author of POJOs in Action

Founder of the original CloudFoundry.com

» @crichardson
chris@chrisrichardson.net
http://plainoldobjects.com

http://microservices.io

- EMERGING TECHNOLOGIES

) FOR THE ENTERPRISE
W,

Presentation goal

Show how Event Sourcing and

Command Query Responsibility Segregation
(CQRS)

are a great way to implement microservices

About Chris

Q WP0J0Os
& INACTION

A
|

N/
Y/

19

:
|

@crichardson

About Chris

= Founder of a startup that’s creating a platform for developing
event-driven microservices

» Consultant helping organizations improve how they architect
and deploy applications using cloud, micro services, polyglot
applications, NoSQL, ...

= Creator of http://miCroservices.io

@crichardson

For more information

® Nhttps://github.com/cer/event-sourcing-examples

x Nttp://microservices.io

= Nitp://plainoldobjects.com/

® https://twitter.com/crichardson

@crichardson
LLLLLEEEEEEEEEEEEEEEEEHHHHEESSEEEEEE

Agenda

= \Why build event-driven microservices?
x Overview of event sourcing
= [Designing microservices with event sourcing

= |mplementing gueries in an event sourced application

@crichardson
LLLLLEEEEEEEEEEEEEEEEEHHHHEESSEEEEEE

ITraditional application
architecture

WAR/EAR
Spring MVC
Banking
HTML
REST/JSON
Browser/ e Accounts
. o Yatetimaidtedet
Client balancer

Spring

Transfers)
Hibernate

Customers

RDBMS

@crichardson

But large monolithic
applications

Trouble!

INntimidates developers

.- P

3 - At F
o T Tf i \:'\“"'Jﬁ"'ﬁ"'

y S

@crichardson

Obstacle to frequent
deployments

x Need to redeploy everything to change one component

= |nterrupts long running background (e.g. Quartz) jobs .
Eggs in
= |ncreases risk of failure
one basket
Fear of change
x Updates will happen less often - really long QA cycles
x e.g. Makes A/B testing Ul really difficult
@crichardson

Overloads your IDE and
container

Slows dowin cievetopme»\&

@crichardson

Obstacle to scaling
development

Lobks of coordination and
comwmunicakion requireci

@crichardson

Requires long-term commitment
to a technology stack

@crichardson

Limitations of a single
relational database

x Scalability

= Distribution

® Schema updates

= O/R impedance mismatch

» Handling semi-structured data

AppPly

Y axis -
functional
decomposition

Scale by
splitting
different things

the scale cube

X axis

- horizontal duplication

MARTIN L. ABBOTT MICHAEL T. FISHER

@crichardson

Use a microservice architecture

! Standalone :
: Banking Ul Services !
i :
' l
' l
!

i Account Management Money Transfer :
! Service Management Service "
!

Account Money Transfer

Database Database

@crichardson

Use
functionally decomposed
and sharded
relational databases

@crichardson

Use NoSQL databases

x Avoids the limitations of RDBMS

» [ext search = Solr/Cloud Search
x Social (graph) data = Neo4J

x Highly distributed/available database = Cassandra

@crichardson
LLLLLEEEEEEEEEEEEEEEEEHHHHEESSEEEEEE

Different modules use
different types of databases

- Asynchronous message

(Aclors)

Graph-structured 5
domain rules

Columnar data
access with
decenlralization

l “Module 2 |

[e
(Actors)

passing

 Module 4 l

(Aéturs)

Document
slructures

Document struclures

with offline
processing

-*—9
{Actors)

IEEE Software Sept/October 2010 - Debasish Ghosh / Twitter @debasishg
LLLLLEEEEEEEEEEEEEEEEEHHHHEESSEEEEEE

@crichardson

But this results In distributed
data management problems

@crichardson

Example

1 -S0O + Text

Search engine

How to maintain consistency without 2PC?

lons”?

abase

T

a

ANV
00000000

00006

tency without transact

Update two

N
| &

O
AN 2

5
o = 5
O O =
= 2
T = =
WS .

@crichardson

Example #3 - Cassandra main
table <=> index table

How to maintain consistency without 2PC?

Example #4: Money transfer

Account Management Money Transter
Service Management Service
Account Account Money Transter
Database A Database B Database
Account #1 Account #2 Money Transter

How to maintain consistency without 2PC?

@crichardson

Event-based architecture to
the rescue

x Components (e.g. services) publish events when state
changes

x Components subscribe to events

= Maintains eventual consistency across multiple aggregates
(in multiple datastores)

= Synchronize replicated data

@crichardson
LLLLLEEEEEEEEEEEEEEEEEHHHHEESSEEEEEE

Event-driven synchronization:
SQL + Text Search engme

create product

—ventually consistent money transfer

transferMoney()

l

MoneyTransferService AccountService

Money Transfer
fromAccountld = 101
toAccountld = 202

Account
id =202

Account
id =101

balance = 195 balance = 180

amount = 55
state = COMPLETED

A
Subscribes to:

Ag¢countDebitedEvent _ Lastatatartiasataate” Publishes:
AdcountCreditedEvent Publishies: .
MoneyTransfgfCreatedEvent | AccountDebitedEvent
Money TransferCreateqEvent : AccountCreditedEvent
: DebitRegbrdedEvent
DebitRecordedEvent

Message Bus
LSS

1o maintain consistency
a service must
atomically publish an event
whenever
a domain object changes

@crichardson

How 1o atomically update the
datastore and publish event(s)?

Update and publish using
2L

= Guaranteed atomicity BUT

= Need a distributed transaction manager

x Database and message broker must support 2PC
® |mpacts reliablility

= Not fashionable

x 2PC is best avoided

@crichardson

Use data store as message
gueue

= Use datastore as a message queue
= [xn #1: Update database: new entity state & event
= [xn #2: Consume event

x [XN #3: Mark event as consumed

Eventually consistent mechanism (used by eBay)

See BASE: An Acid Alternative, http://bit.ly/ebaybase
= BUT

Tangled business logic and event publishing code

Difficult to implement when using a NoSQL database :-(

@crichardson

Agenda

= \\Vhy build event-driven microservices?
= QOverview of event sourcing
= [Designing microservices with event sourcing

= |mplementing gueries in an event sourced application

@crichardson
LLLLLEEEEEEEEEEEEEEEEEHHHHEESSEEEEEE

Event sourcing

= [For each aggregate in your domain model:
= |[dentify (state-changing) domain events
= Define Event classes

= [For example,

= Account: AccountOpenedEvent, AccountDebitedEvent,
AccountCreditedEvent

x ShoppingCart: ltemAddedEvent, ltemRemovedEvent,
OrderPlacedEvent

@crichardson
LLLLLEEEEEEEEEEEEEEEEEHHHHEESSEEEEEE

Persists events
NOT current state

Account table

101 450
Account
Event table
balance
101 901 AccountOpened 500
open(initial)
debit(amount) 101 902 AccountCredited 250
credit(amount)

101 903 AccountDebited 300

crichardson

Replay events to recreate
state

Events

AccountOpenedEvent(balance)
AccountDebitedEvent(amount)

AccountCreditedEvent(amount) A f
ccoun

balance

@crichardson
LLLLLEEEEEEEEEEEEEEEEEHHHHEESSEEEEEE

Two actions that must be atomic

Before: update state + publish
events

Now: persist (and publish)
events

Single action that can
be done atomically

Request handling in an event-sourced application

Microservice A
pastEvents = findEvents(entityld)

new()

applyEvents(pastkEvents)

HTTP Account Event

Handler
newEvents = processCmd(SomeCmd) Store

savekvents(newEvents)

—vent Store publishes events -
consumed by other services

Microservice B

subscribe(E\%entTypeS) Update)
' Aggregate
publishéevent)
; Event
L Subscriber
Store . URSCr1oe
ssass update()
publishievent) NoSQL
: materialized :
view :
SR s e T

Event store implementations

x Home-grown/DIY

x geteventstore.com by Greg Young

®x Talk to me about my project :-)

@crichardson
LLLLLEEEEEEEEEEEEEEEEEHHHHEESSEEEEEE

Optimizing using snapshots

= Most aggregates have relatively few events

» BUT consider a 10-year old Account = many transactions

= [herefore, use snapshots:
= Periodically save snapshot of aggregate state
= [ypically serialize a memento of the aggregate

= | oad |latest snapshot + subsequent events

@crichardson

Hybrid OO/Functional style
example aggregate

Aggregate traits

Apply event returning
updated Aggregate

trait Aggregate[T] { self : T =>
def applyEvent(event : Event) : T
}

trait CommandProcessingAggregate[T, -CT] extends Aggregate[T] { self : T =>

def processCommand(command : CT) : Seq[Event]

}

Map Command to Events

@crichardson

Account - command processing

case class Account(balance : BigDecimal)
extends PatternMatchingCommandProcessingAggregate[Account, AccountCommand] <{

def this() = this(null)

def processCommand = {
case OpenAccountCommand(initialBalance) => Prevent
Seq(AccountOpenedEvent (initialBalance)) Overd raﬂ:

case CreditAccountCommand(amount, transactionId) =>
Seq(AccountCreditedEvent (amount, transactionId))

case DebitAccountCommand(amount, transactionId) if amount <= balance =>
Seq(AccountDebitedEvent (amount, transactionId))

case DebitAccountCommand(amount, transactionId) =>
Seq(AccountDebitFailedDueToInsufficientFundsEvent(amount, transactionId))

@crichardson
LLLLLEEEEEEEEEEEEEEEEEHHHHEESSEEEEEE

Account - applying events

Immutable

case class Account(balance : BigDecimal)
extends PatternMatchingCommandProcessingAggregate[Account ,#fAccountCommand] {

def applyEvent =
case AccountOpenedEvent(initialBalance) => copy(balance = initialBalance)
case AccountDebitedEvent(amount, _) => copy(balance = balance - amount)

case AccountCreditedEvent(amount, _) =>
copy(balance = balance + amount)

case AccountDebitFailedDueToInsufficientFundsEvent(amount, _) =>
this

@crichardson
LLLLLEEEEEEEEEEEEEEEEEHHHHEESSEEEEEE

Fvent Store AP

EventStore {

save[T <: Aggregate[T] : ClassTagl(events: Seq[Event], assignedId: Option[EntityId] = None)
: Future[EntityIdAndVersion]

update[T <: Aggregate[T] : ClassTag](entityIdAndVersion: EntityIdAndVersion, events: Seq[Event])
: Future[EntityIdAndVersion]

find[T <: Aggregate[T] : ClassTagl(entityId: EntityId)
: Future[EntityWithMetadata[T]]

findOptional[T <: Aggregate[T] : ClassTagl(entityId: EntityId)
: Future[Option[EntityWithMetadatal[T]]]

Reactive/Async API

@crichardson

Functional example aggregate

Aggregate type classes/implicits

trait Aggregate[T, -EV <: Event] {
def newInstance() : T

def applyEvent(aggregate : T, event : EV) : T

def applyEvents(aggregate: T, events: Seq[EV])
events.foldLeft(aggregate) (applyEvent)

trait Command

trait AggregateCommandProcessor[T , -CT <: Command, EV <: Event] {

def processCommand(aggregate : T, command : CT) : Seq[EV]

}

@crichardson
LLLLLEEEEEEEEEEEEEEEEEHHHHEESSEEEEEE

Functional-style
Money Iranster Aggregate

State ‘ Behavior

case class TransferDetaifs(fromAccountId : EntityId, toAccountId : EntityId, amount

case class MoneyTransfer(state : TransferStates.State, details : TransferDetails)

implicit object MoneyTransferAggregate extends Aggregate[MoneyTransfer, MoneyTransferEvent]
with AggregateCommandProcessor[MoneyTransfer, MoneyTransferCommand, MoneyTransferEvent] {

override def newlInstance() = MoneyTransfer(TransferStates.NEW, null)

override def processCommand(mt: MoneyTransfer, command: MoneyTransferCommand): Seq[MoneyTransferEvent] =
command match {...}

override def applyEvent(mt: MoneyTransfer, event: MoneyTransferEvent): MoneyTransfer =
event match {...}

@crichardson

FP-style event store

Enables inference of T, and EV

EventStore {

save[T, EV <: Event] : Class[T], events: Seq[EV], assignedId: Option[EntityId] = None)
cit ag : Aggregate[T, EV])
Future[EntityIdAndVersion]

update[T, EV <: Event](c¢ : Class[T], entityIdAndVersion: EntityIdAndVersion, events: Seq[EV])
(1 cit ag : Aggregate[T, EV])
Future[EntityIdAndVersion]

find [T, EV <: z : Class[T], entityId: EntityId)
implicit ag : Aggregate[T, EV]): Future[EntityWithMetadata([T, EV]]

findOptionall[T, EV <: : Class[T], entityId: EntityId)
(implicit ag : Aggregate([T, EV]): Future[Option[EntityWithMetadatal[T, EV]]]

Tells ES how to instantiate
aggregate and apply events

@crichardson
LLLLLEEEEEEEEEEEEEEEEEHHHHEESSEEEEEE

Business benefits of event
sourcing

= Built-in, reliable audit log
= Enables temporal queries
x Publishes events needed by big data/predictive analytics etc.

» Preserved history = More easily implement future

requirements

@crichardson

Technical benefits of event
sourcing

® Solves data consistency issues in a Microservice/NoSQL -
based architecture:

= Atomically save and publish events

= Event subscribers update other aggregates ensuring
eventual consistency.

= Fvent subscribers update materialized views in SQL and
NoSQL databases (more on that later)

x Eliminates O/R mapping problem

@crichardson

Drawbacks of event sourcing

= \Weird and unfamiliar

®x Fvents = a historical record of your bad design decisions
» Handling duplicate events can be tricky

x Application must handle eventually consistent data

= Fvent store only directly supports PK-based lookup (more on
that later)

@crichardson
LLLLLEEEEEEEEEEEEEEEEEHHHHEESSEEEEEE

Agenda

= \\Vhy build event-driven microservices?
x Overview of event sourcing
» [Designing microservices with event sourcing

= |mplementing gueries in an event sourced application

@crichardson
LLLLLEEEEEEEEEEEEEEEEEHHHHEESSEEEEEE

~ Identify
Services

Strategic vs Tactical design

- Design
Services

Strategic design
and
Greenfield development

Strategic design: identify sub-
domains

Strategic design: identify sub-
domains

CUSTOMER TRANSACTION
MANAGEMENT MANAGEMENT

ACCOUNT
MANAGEMENT

Strategic design: identity
bounded contexts

Strategic design: deﬁne
microsendees

Declde Inter-service
communication mechanisms

x Service X reads from service Y
x X makes an RPC call to Y
= X consumes events published by Y
= Service X updates service Y
» XrakesapRPGCeallte~¥ <= unreliable without 2PC

= Y consumes events published by X

@crichardson

Strategic design
anao
refactoring a monolith

Existing monolith: implement
new functionality as a service

i

Anti-

Monolitgss-—Scomiplions— e n/Ice
layer

Existing monolith: extract
functionality as a service

Monolith

Service
|dentify bounded
context

@crichardson

Existing monolith: extract
functionality as a service

i

Anti-

Monolitgss-—Scomiplions— e n/Ice
layer

lactical design

Use the familiar building
blocks of DDD

= Entity
= \/alue object
= Services

= Bepositories

Partition a
bounded context’s
domain model
INto Aggregates

|[dentity the state changing
events for each Aggregate

Designing domain events

= Naming
» Past tense to reflect that something occurred
= |deally specific: AccountOpened/Debited/Credited
= Sometimes vague: FooUpdated
= Event attributes
= |d - TimeUUID
= Other attributes - fromm command, required 1o persist entity
= Fvent enrichment
» ProductAddedToCart(productld) vs. ProductAddedCart(productinfo)

= [EXxtra data to support event consumers

@crichardson
LLLLLEEEEEEEEEEEEEEEEEHHHHEESSEEEEEE

The anatomy of a microservice
HTTP. Request Xyz Request

MICroservice I

HTTP Adapter Xyz Adapter
Aggregate

Events Event Adapter
‘ Events

Event Store

@crichardson
LLLLLEEEEEEEEEEEEEEEEEHHHHEESSEEEEEE

Asynchronous Spring MVC
controller

@RestController
class MoneyTransferController @Autowired() (moneyTransferService : MoneyTransferService,
; eventStore : EventStore) {

@RequestMapping(value=Array("/transfers"), method = Array(RequestMethod.POST))

def create(@RequestBody transferDetails : TransferDetails) = WebUtil.toDeferredResult A
for (transaction <- moneyTransferService.transferMoney(transferDetails))
yield CreateMoneyTransferResponse(transaction.entityId.id)

Scala Future => Spring MVC DeferredResult

@crichardson
LLLLLEEEEEEEEEEEEEEEEEHHHHEESSEEEEEE

Money Iransferservice

class MoneyTransferService(implicit eventStore : EventStore) {

def transferMoney(transferDetails : TransferDetails) =
newEntity[MoneyTransfer] <== CreateMoneyTransferCommand(transferDetails)

DSL concisely specifies:

1.Creates Money Transfer aggregate
2.Processes command

3.Applies events

4.Persists events

@crichardson

Handling events published by
Accounts

@EventSubscriber (id = "transactionEventHandlers")
class MoneyTransferEventHandlers(implicit eventStore: EventStore)
extends CompoundEventHandler {

val recordDebit =
handlerForEvent [AccountDebitedEvent] { de =>
existingEntity[MoneyTransfer] (de.event.transactionId) <==

RecordDebitCommand(de.entityId)
}

1.Load Money Transfer aggregate
2.Processes command
3.Applies events

4 Persists events

@crichardson

Agenda

= \\Vhy build event-driven microservices?
x Overview of event sourcing
= [Designing microservices with event sourcing

» |mplementing gueries in an event sourced application

@crichardson
LLLLLEEEEEEEEEEEEEEEEEHHHHEESSEEEEEE

Let’s Imagine that you want to
display an account and it's
recent transactions...

Displaying balance + recent
credits and debits

= \\Ne need to do a “join: between the Account and the
corresponding Money Transfers

x (Assuming Debit/Credit events don’t include other account, ...)

BUT
x Event Store = primary key lookup of individual aggregates, ...

—

x Use Command Query Responsibility Segregation

@crichardson

Command Query Responsibility
Segregation (CQRS)

Commands Queries

A ; (Denormalized)
ggregate View
Command-side Query-side

Events Events

Event Store

Query-side microservices

HTTP GET
Request
Updater - microservice

View
Store

View Updater | 2 e View Query

Service MongoDB Service
Neo4J
CloudSearch

Reader - microservice
Events

Event Store

@crichardson
LLLLLEEEEEEEEEEEEEEEEEHHHHEESSEEEEEE

Persisting account balance and
recent transactions in MongoDB

Current
balance

i d: "298993498",
bal ance: 100000,
transfers : [Money Iransfers that

{"transferld" : "4552840948484", update the account
"fromAccount I d" : 298993498,
"t oAccount | d" : 3483948934,
"anmpunt" : 5000}, ...
I The debits and credits

changes: |
{"changel d" : "93843948934",
"transferld" : "4552840948484",
"transacti onType" : "Account Debited",

"amount" : 5000}, ...

BQMOT’MQLE«&QC& o é‘?"fi«@i«@.h& LOOL@M @crichardson

Persisting account Info using
MongoDB...

cl ass Account | nf oUpdat eSer vi ce
(account I nfoRepository : Account | nfoRepository, nongoTenplate : MongoTenpl at e)
ext ends ConpoundEvent Handl er {

@vent Handl er Met hod

def created(de: D spatchedEvent[Account OpenedEvent]) = ...

@:vent Handl er Met hod
def recordDebit(de: D spatchedEvent[Account DebitedEvent]) = ...

@vent Handl er Met hod
def recordCredit(de: D spatchedEvent[Account CreditedEvent]) = ..

@:vent Handl er Met hod
def recordTransfer(de: D spatchedEvent[MoneyTransfer CreatedEvent]) = ...

@crichardson

Other kinds of views

x AWS Cloud Search x AWS DynamoDB

= Text search as-a-Service x NoSQL as-a-Service

= \iew updater batches x On-demand scalable -
aggregates 1o index specify desired read/write

. . capacity

= \iew query service does

text search = Document and key-value
data models

x Jseful for denormalized,
Ul oriented views

Benefits and drawbacks of
CQRS

Benefits Drawbacks
= Necessary in an event-sourced x Complexity
architecture

= Potential code duplication
» Separation of concerns =
simpler command and guery
models

x Replication lag/eventually
consistent views

= Supports multiple denormalized
views

» |mproved scalability and
performance

Summary

® Event sourcing solves key data consistency issues with:
= Microservices
x Partitioned SQL/NoSQL databases

= Apply strategic DDD to identify microservices

® Apply tactical DDD to design individual services

x Use CQRS to implement materialized views for queries

@crichardson

» @crichardson chris@chrisrichardson.net

-~ .
{ | " \\\ .
‘ @ ”\ |
" : - . -

v. o {
I 'y
"’ e 4
- Ty) S
;év

1o

= =

"(!.

L &

http://plainoldobjects.com http://microservices.io

