
@crichardson

Developing event-driven
microservices with event

sourcing and CQRS
Chris Richardson

Author of POJOs in Action
Founder of the original CloudFoundry.com

 @crichardson
chris@chrisrichardson.net
http://plainoldobjects.com
http://microservices.io

@crichardson

Presentation goal

Show how Event Sourcing and
Command Query Responsibility Segregation

(CQRS)
are a great way to implement microservices

@crichardson

About Chris

@crichardson

About Chris

Founder of a startup that’s creating a platform for developing
event-driven microservices

Consultant helping organizations improve how they architect
and deploy applications using cloud, micro services, polyglot
applications, NoSQL, ...

Creator of http://microservices.io

@crichardson

For more information

https://github.com/cer/event-sourcing-examples

http://microservices.io

http://plainoldobjects.com/

https://twitter.com/crichardson

@crichardson

Agenda

Why build event-driven microservices?

Overview of event sourcing

Designing microservices with event sourcing

Implementing queries in an event sourced application

@crichardson

Tomcat

Traditional application
architecture

Browser/
Client

WAR/EAR

RDBMS

Customers

Accounts

Transfers

Banking

develop
test

deploy

Simple

Load
balancer

scale

Spring MVC

Spring
Hibernate

...

HTML

REST/JSON

ACID

@crichardson

But large monolithic
applications

=
Trouble!

@crichardson

Intimidates developers

@crichardson

Obstacle to frequent
deployments

Need to redeploy everything to change one component

Interrupts long running background (e.g. Quartz) jobs

Increases risk of failure

Fear of change

Updates will happen less often - really long QA cycles

e.g. Makes A/B testing UI really difficult

Eggs in
one basket

@crichardson

Overloads your IDE and
container

Slows down development

@crichardson

Lots of coordination and
communication required

Obstacle to scaling
development

I want to update
the UI

But
the backend is not working

yet!

@crichardson

Requires long-term commitment
to a technology stack

@crichardson

Limitations of a single
relational database

Scalability

Distribution

Schema updates

O/R impedance mismatch

Handling semi-structured data

@crichardson

Apply the scale cube

X axis
- horizontal duplication

Z ax
is

- d
ata

 pa
rtit

ion
ing

Y axis -
functional

decomposition

Sca
le b

y s
plit

tin
g s

im
ilar

thi
ng

s

Scale by
splitting

different things

@crichardson

Use a microservice architecture

Banking UI

Account Management
Service

MoneyTransfer
Management Service

Account
Database

MoneyTransfer
Database

Standalone
services

@crichardson

Use
functionally decomposed

and sharded
relational databases

@crichardson

Use NoSQL databases

Avoids the limitations of RDBMS

Text search ⇒ Solr/Cloud Search

Social (graph) data ⇒ Neo4J

Highly distributed/available database ⇒ Cassandra

…

@crichardson

Different modules use
different types of databases

IEEE Software Sept/October 2010 - Debasish Ghosh / Twitter @debasishg

@crichardson

But this results in distributed
data management problems

@crichardson

Example #1 - SQL + Text
Search engine

Application

MySQL ElasticSearch

How to maintain consistency without 2PC?

Product #1 Product #1

@crichardson

Example #2 - Update two
entities in a NoSQL database

Application

MongoDB

How to maintain consistency without transactions?

Collection
Document 1

Document 2

@crichardson

Example #3 - Cassandra main
table <=> index table

Application

Cassandra

How to maintain consistency without 2PC?

Main Table

Denormalized
view

Index Table

@crichardson

Example #4: Money transfer
Account Management

Service
MoneyTransfer

Management Service

Account
Database A

MoneyTransfer
Database

Account #1 Money Transfer

How to maintain consistency without 2PC?

Account
Database B

Account #2

@crichardson

Event-based architecture to
the rescue

Components (e.g. services) publish events when state
changes

Components subscribe to events

Maintains eventual consistency across multiple aggregates
(in multiple datastores)

Synchronize replicated data

@crichardson

Event-driven synchronization:
SQL + Text Search engine

Catalog Service

MySQL ElasticSearch

Product #1 Product #1

Search Service

Message Bus

Insert Product
Created

Product
Created Index Doc

create product

@crichardson

MoneyTransferService
MoneyTransfer

fromAccountId = 101
toAccountId = 202
amount = 55
state = INITIAL

MoneyTransfer
fromAccountId = 101
toAccountId = 202
amount = 55
state = DEBITED

MoneyTransfer
fromAccountId = 101
toAccountId = 202
amount = 55
state = COMPLETED

Eventually consistent money transfer

Message Bus

AccountService

transferMoney()

Publishes:
Subscribes to:

Subscribes to:

publishes:

MoneyTransferCreatedEvent

AccountDebitedEvent

DebitRecordedEvent

AccountCreditedEvent
MoneyTransferCreatedEvent

DebitRecordedEvent

AccountDebitedEvent
AccountCreditedEvent

Account
id = 101
balance = 250

Account
id = 202
balance = 125

Account
id = 101
balance = 195

Account
id = 202
balance = 180

@crichardson

To maintain consistency
a service must

atomically publish an event
whenever

a domain object changes

@crichardson

How to atomically update the
datastore and publish event(s)?

@crichardson

Update and publish using
2PC

Guaranteed atomicity BUT

Need a distributed transaction manager

Database and message broker must support 2PC

Impacts reliability

Not fashionable

2PC is best avoided

@crichardson

Use data store as message
queue

Use datastore as a message queue

Txn #1: Update database: new entity state & event

Txn #2: Consume event

Txn #3: Mark event as consumed

Eventually consistent mechanism (used by eBay)

See BASE: An Acid Alternative, http://bit.ly/ebaybase

BUT

Tangled business logic and event publishing code

Difficult to implement when using a NoSQL database :-(

@crichardson

Agenda

Why build event-driven microservices?

Overview of event sourcing

Designing microservices with event sourcing

Implementing queries in an event sourced application

@crichardson

Event sourcing
For each aggregate in your domain model:

Identify (state-changing) domain events

Define Event classes

For example,

Account: AccountOpenedEvent, AccountDebitedEvent,
AccountCreditedEvent

ShoppingCart: ItemAddedEvent, ItemRemovedEvent,
OrderPlacedEvent

@crichardson

Persists events
NOT current state

Account

balance

open(initial)
debit(amount)
credit(amount)

AccountOpened

Event table

AccountCredited

AccountDebited

101 450

Account tableX
101

101

101

901

902

903

500

250

300

@crichardson

Replay events to recreate
state

Account

balance

AccountOpenedEvent(balance)
AccountDebitedEvent(amount)
AccountCreditedEvent(amount)

Events

@crichardson

Before: update state + publish
events

Two actions that must be atomic

Single action that can
be done atomically

Now: persist (and publish)
events

@crichardson

Request handling in an event-sourced application

HTTP
Handler

Event
Store

pastEvents = findEvents(entityId)

Account

new()

applyEvents(pastEvents)

newEvents = processCmd(SomeCmd)

saveEvents(newEvents)

Microservice A

@crichardson

Event Store publishes events -
consumed by other services

Event
Store

Event
Subscriber

subscribe(EventTypes)

publish(event)

publish(event)

Aggregate

NoSQL
materialized

view

update()

update()

Microservice B

@crichardson

Event store implementations

Home-grown/DIY

geteventstore.com by Greg Young

Talk to me about my project :-)

@crichardson

Optimizing using snapshots

Most aggregates have relatively few events

BUT consider a 10-year old Account ⇒ many transactions

Therefore, use snapshots:

Periodically save snapshot of aggregate state

Typically serialize a memento of the aggregate

Load latest snapshot + subsequent events

@crichardson

Hybrid OO/Functional style
example aggregate

@crichardson

Aggregate traits

Map Command to Events

Apply event returning
updated Aggregate

@crichardson

Account - command processing

Prevent
overdraft

@crichardson

Account - applying events
Immutable

@crichardson

Event Store API

Reactive/Async API

@crichardson

Functional example aggregate

@crichardson

Aggregate type classes/implicits

@crichardson

Functional-style
MoneyTransfer Aggregate

State Behavior

@crichardson

FP-style event store
Enables inference of T, and EV

Tells ES how to instantiate
aggregate and apply events

@crichardson

Business benefits of event
sourcing

Built-in, reliable audit log

Enables temporal queries

Publishes events needed by big data/predictive analytics etc.

Preserved history ⇒ More easily implement future
requirements

@crichardson

Technical benefits of event
sourcing

Solves data consistency issues in a Microservice/NoSQL-
based architecture:

Atomically save and publish events

Event subscribers update other aggregates ensuring
eventual consistency

Event subscribers update materialized views in SQL and
NoSQL databases (more on that later)

Eliminates O/R mapping problem

@crichardson

Drawbacks of event sourcing

Weird and unfamiliar

Events = a historical record of your bad design decisions

Handling duplicate events can be tricky

Application must handle eventually consistent data

Event store only directly supports PK-based lookup (more on
that later)

@crichardson

Agenda

Why build event-driven microservices?

Overview of event sourcing

Designing microservices with event sourcing

Implementing queries in an event sourced application

@crichardson

Strategic vs Tactical design

Identify
Services

Design
Services

@crichardson

Strategic design
and

Greenfield development

@crichardson

Strategic design: identify sub-
domains

BANKING DOMAIN

@crichardson

Strategic design: identify sub-
domains

CUSTOMER
MANAGEMENT

ACCOUNT
MANAGEMENT

TRANSACTION
MANAGEMENT

@crichardson

Strategic design: identify
bounded contexts

CUSTOMER
MANAGEMENT

ACCOUNT
MANAGEMENT

TRANSACTION
MANAGEMENT

@crichardson

Strategic design: define
microservices

Customer
Management

Service

Transaction
Management

Service

Account
Management

Service

@crichardson

Decide inter-service
communication mechanisms

Service X reads from service Y

X makes an RPC call to Y

X consumes events published by Y

Service X updates service Y

X makes an RPC call to Y <= unreliable without 2PC

Y consumes events published by X

@crichardson

Strategic design
and

refactoring a monolith

@crichardson

Existing monolith: implement
new functionality as a service

Monolith Service
Anti-

corruption
layer

Glue
code

Pristine

@crichardson

Existing monolith: extract
functionality as a service

Monolith

Service
Identify bounded

context

@crichardson

Existing monolith: extract
functionality as a service

Monolith Service
Anti-

corruption
layer

Glue
code

Pristine

@crichardson

Tactical design

@crichardson

Use the familiar building
blocks of DDD

Entity

Value object

Services

Repositories

@crichardson

Partition a
bounded context’s

domain model
into Aggregates

@crichardson

Identify the state changing
events for each Aggregate

@crichardson

Designing domain events
Naming

Past tense to reflect that something occurred

Ideally specific: AccountOpened/Debited/Credited

Sometimes vague: FooUpdated

Event attributes

Id - TimeUUID

Other attributes - from command, required to persist entity

Event enrichment

ProductAddedToCart(productId) vs. ProductAddedCart(productInfo)

Extra data to support event consumers

@crichardson

The anatomy of a microservice

Event Store

HTTP Request

HTTP Adapter

Event Adapter

Cmd

Cmd

Events
Events

Xyz Adapter

Xyz Request

microservice

Aggregate

@crichardson

Asynchronous Spring MVC
controller

Scala Future => Spring MVC DeferredResult

@crichardson

MoneyTransferService

DSL concisely specifies:
1.Creates MoneyTransfer aggregate
2.Processes command
3.Applies events
4.Persists events

@crichardson

Handling events published by
Accounts

1.Load MoneyTransfer aggregate
2.Processes command
3.Applies events
4.Persists events

@crichardson

Agenda

Why build event-driven microservices?

Overview of event sourcing

Designing microservices with event sourcing

Implementing queries in an event sourced application

@crichardson

Let’s imagine that you want to
display an account and it’s
recent transactions...

@crichardson

Displaying balance + recent
credits and debits

We need to do a “join: between the Account and the
corresponding MoneyTransfers

(Assuming Debit/Credit events don’t include other account, ...)

BUT
Event Store = primary key lookup of individual aggregates, ...

⇒
Use Command Query Responsibility Segregation

@crichardson

Command Query Responsibility
Segregation (CQRS)

Command-side

Commands

Aggregate

Event Store

Events

Query-side

Queries

(Denormalized)
View

Events

@crichardson

Query-side microservices

Event Store

Updater - microservice

View Updater
Service

Events
Reader - microservice

HTTP GET
Request

View Query
Service

View
Store

e.g.
MongoDB

Neo4J
CloudSearch

update query

@crichardson

Persisting account balance and
recent transactions in MongoDB

{
 id: "298993498",
 balance: 100000,
 transfers : [

{"transferId" : "4552840948484",
 "fromAccountId" : 298993498,
 "toAccountId" : 3483948934,
 "amount" : 5000}, ...

],
 changes: [
 {"changeId" : "93843948934",
 "transferId" : "4552840948484",
 "transactionType" : "AccountDebited",
 "amount" : 5000}, ...
]
}

Denormalized = efficient lookup

MoneyTransfers that
update the account

The debits and credits

Current
balance

@crichardson

Persisting account info using
MongoDB...

class AccountInfoUpdateService
 (accountInfoRepository : AccountInfoRepository, mongoTemplate : MongoTemplate)
 extends CompoundEventHandler {

 @EventHandlerMethod
 def created(de: DispatchedEvent[AccountOpenedEvent]) = …

 @EventHandlerMethod
 def recordDebit(de: DispatchedEvent[AccountDebitedEvent]) = …

 @EventHandlerMethod
 def recordCredit(de: DispatchedEvent[AccountCreditedEvent]) = …

 @EventHandlerMethod
 def recordTransfer(de: DispatchedEvent[MoneyTransferCreatedEvent]) = …

}

Other kinds of views
AWS Cloud Search

Text search as-a-Service

View updater batches
aggregates to index

View query service does
text search

AWS DynamoDB

NoSQL as-a-Service

On-demand scalable -
specify desired read/write
capacity

Document and key-value
data models

Useful for denormalized,
UI oriented views

Benefits and drawbacks of
CQRS

Benefits

Necessary in an event-sourced
architecture

Separation of concerns =
simpler command and query
models

Supports multiple denormalized
views

Improved scalability and
performance

Drawbacks

Complexity

Potential code duplication

Replication lag/eventually
consistent views

@crichardson

Summary

Event sourcing solves key data consistency issues with:

Microservices

Partitioned SQL/NoSQL databases

Apply strategic DDD to identify microservices

Apply tactical DDD to design individual services

Use CQRS to implement materialized views for queries

@crichardson

@crichardson chris@chrisrichardson.net

http://plainoldobjects.com http://microservices.io

