Putting Apache Kafka to Use

Building a Real-time Data Platform for Event Streams

JAY KREPS, CONFLUENT

A Couple of Themes

O & & &
CLFFS NOTES n S

- . >
g

Theme 1: Rise of Events

Theme 2: Immutabillity Everywhere

Mutable local state Counter in a for loop Functional Programming
Mutable process-wide state ConcurrentHashMap Functional Programming
Mutable on disk structures B-Tree LSM

Distributed systems Dynamo-like key-value store State machine replication
Mutability in databases RDBMS Event Sourcing
Company-wide data flow Double write Kafka

Theme 3: Datacenter-Level Thinking

The Datacenter Needs an Operating System

Matei Zaharia, Benjamin Hindman, Andy Konwinski, Ali Ghodsi,
Anthony D. Joseph, Randy Katz, Scott Shenker, Ion Stoica
University of California, Berkeley

1 Introduction

Clusters of commodity servers have become a major
computing platform, powering not only some of today’s
most popular consumer applications—Internet services
such as search and social networks—but also a growing
number of scientific and enterprise workloads [2]. This
rise in cluster computing has even led some to declare
that “the datacenter is the new computer™ [16, 24]. How-
ever, the tools for managing and programming this new
computer are still immature. This paper argues that, due
to the growing diversity of cluster applications and users,
the datacenter increasingly needs an operating system.
We take a broad view of an operating system as both a
software layer that manages and abstracts hardware and
a package of tools, such as programming languages and
debuggers, that facilitate the use of a computer. Tradi-

and Pregel steps). However, this is currently difficult
because applications are written independently, with no
common interfaces for accessing resources and data.

In addition, clusters are serving increasing numbers of
concurrent users, which require responsive time-sharing.
For example, while MapReduce was initially used for a
small set of batch jobs, organizations like Facebook are
now using it to build data warehouses where hundreds of
users run near-interactive ad-hoc queries [29].

Finally, programming and debugging cluster applica-
tions remains difficult even for experts, and is even more
challenging for the growing number of non-expert users
(e.g., scientists) starting to leverage cloud computing.

While cluster users are well-aware of these problems,
current solutions are often ad-hoc. For example, in the
Hadoop stack [3], MapReduce acts as a common exe-

Experience at LinkedIn

2009: We want all our data in Hadoop!

What is all our data”?

X

Initial approach: “gut it out”

Problems

Data coverage

Many source systems
e Relational DBs

e Log files

 Metrics
 Messaging systems
Many data formats
Constant change

« New schemas
 New data sources

Needed: organizational scalabllity

O(N) => O(1)

How does everything else work?

f?

Relational database changes

Apps and Services

I
OLTP Queries

Relational
Databases

Csv Dump\b
Poll For Changes Obs Hadoop
App App App @
Transforms

Relational
Data

Caches & Warehouse

Derived Stores

Transforms

NoSQL

App App App

Key-value
Store

ETL Load

Hadoop

User events

O

Transform

Apps and Apps and Apps and
Services Services Services
I
H'I:P
Log Aggregation
1
rsync
NFS
Load Transform & Load
Relational
Hadoop Data
Warehouse

Application Logs

Apps and Apps and Apps and
Services Services Services

\M

Splunk

Messaging

Activeme

App App App App App
A4

Broker
VAN

Processor | | Processor Processor | | Processor
App App App
Broker
Processor || Processor || Processor || Processor

Metrics and operational data

App App App
Monitoring

This is a giant mess

Apps and Services Apps and Services Apps and Services

ActiveMQ ~HTTP

Monitoring

Relational
Databases

Apps Log Aggregation

\ Key-value

Store

Data Guard ~CSV Dump NFS

i Cache \
ActiveMQ jpy : o

/\ Poll For Changes 0DS Hadoop | gng
NFS
Apps Apps / , /
App App App > C)

Relational Transforms

Data | —onu_

Warehouse

Caches & Transform & Load

Derived Stores

Transforms

Impossible ideas

* Publish data from Hadoop to a search index

 Run a SQL query to find the biggest latency
bottleneck

 Run a SQL query to find common error patterns

* Low latency monitoring of database changes or user
activity

e Incorporate popularity in real-time display and
relevance algorithms

* Products that incorporate user activity

An Infrastructure solution?

..... I sslblALA g

|dea: Stream Data Platform

RDBMS | e—@

y

NoSQL

Synchronous
Reg/Response

0-100s ms

Stream

Platform:

Data

I Stream

Processing

Real-time

Analytics

Near real time

>100s ms

HADOOP: —o
Offline
Data

I Map-
‘ Reduce

Offline batch
> 1 hour

First Attempt: Messaging systems!

Activem@

Problems

e Throughput

e Batch systems

e Persistence

e Stream Processing

« Ordering
guarantees

« Partitioning

Second Attempt: Build Katka!

What does it do”

Producer Producer Producer Producer Producer
Kafka Cluster
Consumer Consumer Consumer Consumer Consumer

Commit Log Abstraction

Reader 1 Reader 2

<+—— Writes

Old » New

Logs & Publish-Subscribe Messaging

Source
System

writes
'

111111

o112,

~ [

reads reads

i ;

Destination Destination
System A System B

A Katka Topic

I
Partition I
1(1110
0 0123456789012:
.
I
Partition | .
1 0123456789:* Writes
.
I
[}
Partition 1{111:
2 0123456789012:
.
(0][s) » New

Replication

Serverl —] —— Server2] — Server3]
A0 === :::::::—'::_':_;;_O— \\\\\\\\\\\\\ B N
Al 4"———’————————__——;;—:::::::::::.:::::: Al
BO-----1--——---- ----% B:0 Controller

Scaling Consumers

Kafka Cluster
Server 1 Server 2
|/ PO P3 |/ P1 P2
N\ AN
rd 4 4 4 N
C1 C2 C3 C4 C5 C6
- Consumer Group A - — Consumer Group B —

Kafka: A Modern Distributed System for Streams

Scalability of a filesystem
- Hundreds of MB/sec/server throughput
- Many TB per server

Guarantees of a database
- Messages strictly ordered

o All data persistent

Distributed by default
> Replication
o Partitioning model

Producers, Consumers, and Brokers all fault tolerant and horizontally
scalable

Stream Data Platform

‘\ I /‘

9 e

> KAFKA: HADOOP —
Stream : —o

| Dt . * Offine PWH
Platform Data

y

—" !
Stream Map-
NoSQL Processing Reduce
Real-time ’

Analytics

Synchronous
Req/Response Near real time

Offline batch
0 -100s ms > 100s ms > 1 hour

Batch Data => Batch Processing

RETURN,

'
\

0fF THE WHOLR

\

NUMBER OF PERSONS

ik

WITHIN THE

SEVERAL DISTRICTS

OF THE

UNITED STATES,

ACCORDING TO

€ 4N ACT PROFVIDING FOR THE ENUMERATION OF
THE INHABITANTS OF THE UNITED STATES;"

ONE THOUSAND SEVEN

FPASIED MARCH THE FIRST,
HUNDRED AXND NINETY -ONE.

Stream processing is a
generalization

of batch processing

and request/response processing

Request/Response processing:
One input => One output

Batch processing:
All inputs => All outputs

Stream Processing:
Some inputs => some outputs
(you choose how much “some” is)

Stream Processing a la carte

Input Kafka Topic

\

Transform

Transform || Transform

\J‘/

Intermediate
Kafka Topic

Y

Transform

Transform || Transform

\M

Output Kafka

Topic

Hadoop

Live
Data Store

Your code

cat

| nput

grep “foo”

WC

Stream Processing with Frameworks

255 STORM

I - Stream
Processing

Spork

Streaming
N J

Unix Pipes, Modernized

cat /usr/share/dict/words | wc -|

On Schemas

Bad Schemas < No Schemas < Good Schemas

Put it all together

| Apps | | Apps | | Apps | | Apps

Social

Key-Value
Graph

Storage

Newsfeed OLAP

Search
Monitoring [« >
Kafka |«
Security &
|—

Fraud <»| Samza
Real-time | >
Analytics T

3

Hadoop Teradata

At LinkedIn

o Everything in the company is a real-time stream
> 800 billion messages written per day

> 2.9 trillion messages read per day

~ 1 PB of stream data

Tens of thousands of producer processes
Backbone for data stores

e Search

e Social Graph

 Newsfeed

e Primary storage (in progress)

Basis for stream processing

Elsewhere

INTUIT
"

N
CISCO.

@

NETELIX

[=) Square ;@{9 y mx
pL¥ 9 ol \/ salesforce

C; Cerner wixmenia verizon

The Free Encyclopedia

Why this is the future

1.System diversity is increasing

2.Data diversity and volume is
Increasing

3.The world is getting faster

4.The technology exists

= &=

“confluent

Mission: Make this a practical reality
everywhere

Product
 Apache Katka
e« Schemas and metadata management
o (Connectors for common systems
 Monitor data flow end-to-end
e Stream processing integration

Questions?

o (Confluent
 @confluentinc
e http://confluent.io
e http://blog.confluent.io/2015/02/25/
stream-data-platform-1
« Apache Kafka
 @apachekafka

e http://kafka.apache.org I ' Logs
o http://linkd.in/199IMwY

e Me
e @jaykreps ey Koeps

