Putting Apache Kafka to Use

Building a Real-time Data Platform for Event Streams
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Theme 1: Rise of Events




Theme 2: Immutabillity Everywhere

Mutable local state Counter in a for loop Functional Programming
Mutable process-wide state  ConcurrentHashMap Functional Programming
Mutable on disk structures B-Tree LSM

Distributed systems Dynamo-like key-value store  State machine replication
Mutability in databases RDBMS Event Sourcing
Company-wide data flow Double write Kafka



Theme 3: Datacenter-Level Thinking

The Datacenter Needs an Operating System

Matei Zaharia, Benjamin Hindman, Andy Konwinski, Ali Ghodsi,
Anthony D. Joseph, Randy Katz, Scott Shenker, Ion Stoica
University of California, Berkeley

1 Introduction

Clusters of commodity servers have become a major
computing platform, powering not only some of today’s
most popular consumer applications—Internet services
such as search and social networks—but also a growing
number of scientific and enterprise workloads [2]. This
rise in cluster computing has even led some to declare
that “the datacenter is the new computer™ [16, 24]. How-
ever, the tools for managing and programming this new
computer are still immature. This paper argues that, due
to the growing diversity of cluster applications and users,
the datacenter increasingly needs an operating system.
We take a broad view of an operating system as both a
software layer that manages and abstracts hardware and
a package of tools, such as programming languages and
debuggers, that facilitate the use of a computer. Tradi-

and Pregel steps). However, this is currently difficult
because applications are written independently, with no
common interfaces for accessing resources and data.

In addition, clusters are serving increasing numbers of
concurrent users, which require responsive time-sharing.
For example, while MapReduce was initially used for a
small set of batch jobs, organizations like Facebook are
now using it to build data warehouses where hundreds of
users run near-interactive ad-hoc queries [29].

Finally, programming and debugging cluster applica-
tions remains difficult even for experts, and is even more
challenging for the growing number of non-expert users
(e.g., scientists) starting to leverage cloud computing.

While cluster users are well-aware of these problems,
current solutions are often ad-hoc. For example, in the
Hadoop stack [3], MapReduce acts as a common exe-




Experience at LinkedIn




2009: We want all our data in Hadoop!




What is all our data”?
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Initial approach: “gut it out”




Problems

Data coverage

Many source systems
e Relational DBs

e Log files

 Metrics
 Messaging systems
Many data formats
Constant change

« New schemas
 New data sources



Needed: organizational scalabllity

O(N) => O(1)




How does everything else work?
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Relational database changes
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NoSQL

App App App

Key-value
Store

ETL Load

Hadoop




User events

O

Transform

Apps and Apps and Apps and
Services Services Services
I
H'I:P
Log Aggregation
1
rsync
NFS
Load Transform & Load
Relational
Hadoop Data
Warehouse




Application Logs
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Messaging
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Metrics and operational data

App App App
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This is a giant mess
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Impossible ideas

* Publish data from Hadoop to a search index

 Run a SQL query to find the biggest latency
bottleneck

 Run a SQL query to find common error patterns

* Low latency monitoring of database changes or user
activity

e Incorporate popularity in real-time display and
relevance algorithms

* Products that incorporate user activity



An Infrastructure solution?
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|dea: Stream Data Platform
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First Attempt: Messaging systems!
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Problems

e Throughput

e Batch systems

e Persistence

e Stream Processing

« Ordering
guarantees

« Partitioning




Second Attempt: Build Katka!




What does it do”

Producer Producer Producer Producer Producer
Kafka Cluster
Consumer Consumer Consumer Consumer Consumer




Commit Log Abstraction
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Logs & Publish-Subscribe Messaging
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A Katka Topic
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Replication
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Scaling Consumers
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Kafka: A Modern Distributed System for Streams

Scalability of a filesystem
- Hundreds of MB/sec/server throughput
- Many TB per server

Guarantees of a database
- Messages strictly ordered

o All data persistent

Distributed by default
> Replication
o Partitioning model

Producers, Consumers, and Brokers all fault tolerant and horizontally
scalable



Stream Data Platform
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Batch Data => Batch Processing
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Stream processing is a
generalization

of batch processing

and request/response processing




Request/Response processing:
One input => One output




Batch processing:
All inputs => All outputs




Stream Processing:
Some inputs => some outputs
(you choose how much “some” is)




Stream Processing a la carte

Input Kafka Topic

\

Transform

Transform || Transform

\J‘/

Intermediate
Kafka Topic

Y

Transform

Transform || Transform

\M

Output Kafka

Topic

Hadoop

Live
Data Store

Your code

cat

| nput

grep “foo”

WC




Stream Processing with Frameworks
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Unix Pipes, Modernized

cat /usr/share/dict/words | wc -|




On Schemas

Bad Schemas < No Schemas < Good Schemas




Put it all together
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At LinkedIn

o Everything in the company is a real-time stream
> 800 billion messages written per day

> 2.9 trillion messages read per day

~ 1 PB of stream data

Tens of thousands of producer processes
Backbone for data stores

e Search

e Social Graph

 Newsfeed

e Primary storage (in progress)

Basis for stream processing
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Why this is the future

1.System diversity is increasing

2.Data diversity and volume is
Increasing

3.The world is getting faster

4.The technology exists
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Mission: Make this a practical reality
everywhere

Product
 Apache Katka
e« Schemas and metadata management
o (Connectors for common systems
 Monitor data flow end-to-end
e Stream processing integration




Questions?

o (Confluent
 @confluentinc
e http://confluent.io
e http://blog.confluent.io/2015/02/25/
stream-data-platform-1
« Apache Kafka
 @apachekafka

e http://kafka.apache.org I ' Logs
o http://linkd.in/199IMwY

e Me
e @jaykreps ey Koeps




