

Maurice Naftalin

Developer, designer, architect, teacher, learner, writer

*

@mauricenaftalin

Repeat offender:

Java 5

Speed Up the Java Development Process

| Java
Generics

and Collections

O'REILLY"

Copyrighted Material

Maurice Naftalin

& Philip Wadler

ORACLE'

Mastering Lambdas: 4
Java Programming ina .
Multicore World

Best Practices for Using Lambda Expressions
and Streams

Oracle
Maurice Naftalin Press

Foruword by Brian Goetz
Copyrighted Material

The Lambda FAQ

HOME ABOUT THE LAMBDA FAQ LAMBDA RESOURCES ASK THE FAQ

Maurice Naftalin's Lambda FAQ Posts 9 Comments

Your questions answered: all about Lambdas and friends

Fundamentals

What is a lambda expression?
Why are lambda expressions
being added to Java?

What is a functional interface?
What is the type of a lambda
expression?

Are lambda expressions objects?
Where can lambda expressions
be used?

What are the scoping rules for
lambda expressions?

Can lambda expressions be used
to define recursive functions?

virtual extension methods—they are having a greater impact on how we program in Java than any other change in the history of the
platform.

I initially started to learn about the new features so that Phil Wadler and I could consider a second edition of our book Java
Generics and Collections. But as I learned more about the subtleties of the changes, it became clear that an entire new book
(Mastering Lambdas) was needed. Writing that has used up my spare cycles for nearly a year, but I'm happy now to turn my
attention back to this FAQ. And though of course I'm urging you to buy the book, it's not the end of wisdom on the subject: as I learn
more and we get greater experience in using the new features, new understanding can be reflected here.

The new features weren't all easy to understand at first, so this FAQ started with the intention of helping you over some of the
obstacles that tripped me up. But then more advanced questions appeared, so I now hope that you will find it useful whether you are
already familiar with lambda expressions or encountering them for the first time. All comments and contributions are welcome. I'm
very pleased to acknowledge the continuing input from the Oracle Java Language and Tools team, especially Stuart Marks and Brian

www.lambdafaqg.org

@mauricenaftalin

First Computer | Used

VHT-10)

Varian 620/i

Fast operation:

Large instruction
repertoire:

Word length:

Modular memory:

1.8-microsecond memory cycle.

107 standard, 18 optional; with
approximately 200 additional
instruction configurations which
can be microcoded.

16~ or 18-bit configurations.

4096 word minimum, 32,768 words
maximum.

— Background

— Java 8 Streams

— Parallelism

— Microbenchmarking
— Case study

— Conclusions

Streams — VWhy!

® Bring functional style to Java
® Exploit hardware parallelism —“explicit but unobtrusive”

N

|

® |ntention: replace loops for aggregate operations

instead of writing this:

Li st <Person> people = ...
Set<City> shortCities = new HashSet <>();

for (Person p : people) {
City ¢ = p.getGity();
I f (c.getNanme().length() < 4) {
shortCities.add(c);
}

}

N

|

® |ntention: replace loops for aggregate operations

we're going to write this:
Li st <Person> people = ...
Set<City> shortCities = people.strean()
. map(Person::getCty)
filter(c -> c.getNane().length() < 4)
.collect(toSet());

N

|

® |ntention: replace loops for aggregate operations

® more concise, more readable, composable operations, parallelizable

we're going to write this:

Set<City> shortCties = people.parallel Strean)
. map(Person::getCty)
filter(c -> c.getNane().length() < 4)
.collect(toSet());

Practical Benefits of Streams?

Functional style will affect (nearly) all collection processing
Automatic parallelism is useful, in certain situations

= but everyone cares about performance!

Parallelism —Why?

10,000,000
Dual-Core Itanium 2 . /
1,000,000 ‘ =
Intel CPU Trends A
(sources: Intel, Wikipedia, K. Olukotun}) "
100,000

The Free Lunch Is Over

1,000

http://www.gotw.ca/publications/concurrency-ddj.htm

100

10

1 | @ Transistors (000) —

@ Clock Speed (MHz)
X] APower (W)
© Perf/Clock (ILP)

0
1970 1975 1980 1985 1990 1995 2000 2005 2010

-Core

Intel Xeon E5 2600 |0

i | Lot
b L TR
e e

Microbenchmarking

Really hard to get meaningful results from a dynamic runtime:
— timing methods are flawed
— System.currentTimeMillis() and System.nanoTime()
— compilation can occur at any time
— garbage collection interferes
— runtime optimizes code after profiling it for some time
— then may deoptimize it
— optimizations include dead code elimination

Microbenchmarking

Don’t try to eliminate these effects yourself!

Use a benchmarking library
— Caliper
— JMH (Java Benchmarking Harness)

Ensure your results are statistically meaningful

Get your benchmarks peer-reviewed

Case Study: grep -b

“The offset 1in bytes of a matched pattern

grep —b: is displayed in front of the matched line.”

The Moving Finger writes; and, having writ,
Moves on: nor all thy Piety nor Wit
Shall bring it back to cancel half a Line
Nor all thy Tears wash out a Word of it.

rubaib | .txt

$ grep —b 'W.xt' rubaibl.txt
44:Moves on: nor all thy Piety nor Wit
122:Nor all thy Tears wash out a Word of it.

Why Shouldn’t We Care!?

Because we don’t have a problem

Why Shouldn’t We Care!?

Because we don’t have a problem

= No performance target!

Why Shouldn’t We Care!?

Else there is a problem, but not in our process

Why Shouldn’t We Care!?

Else there is a problem, but not in our process
= The OS is struggling!

Why Shouldn’t We Care!?

Else there’s a problem in our process, but not in the code

Why Shouldn’t We Care!?

Else there’s a problem in our process, but not in the code
= GC is using all the cycles!

Why Shouldn’t We Care!?

Because we don’t have a problem
= No performance target!
Else there is a problem, but not in our process
= The OS is struggling!
Else there’s a problem in our process, but not in the code

= GC is using all the cycles!
Else there’s a problem in the code, but not a stream problem

___grep solution

The ... | 44 oves ... 36 O Shall ...| 42 | O or ... 4| 0
The ... | 44 es ... 36| 44] [Shall ...| 42 | 0 r... 41 | 42
) ’

The ... | 44 ... 36 44 Shall ...| 42 80 Nor ... 4| 122

grep solution

Supplier “The moving ... writ,” “Moves on: ... Wit”

[The moving ... writ,| 44 0

accumulator

accumulator

¥

[The moving ... writ,| 44 0 Moves on: ... Wit 36 44]

’

~_grep -b:Collector solution

P

N
The ... | 44 Moves ... | 36 44] [Shall... 0 Nor ... 41 @ 42
9
80
/ '
The ... | 44 Moves ...| 36 44 Shall ... | 42 80 ’Nor... 4| 122
9

Why Shouldn’t We Care!?

Else there’s a problem in the code, but not a stream problem

= The bottleneck is elsewhere!

What's wrong!?

* Possibly very little
- overall performance comparable to Unix grep -Db

e Can we improve it by going parallel?

Serial vs. Parallel

® The problem is a prefix sum — every element is the sum of
the preceding ones.

- Combiner is O(n)
* The source is streaming IO (Buf f er edReader. | i nes())
e Amdahl’s Law strikes: =

an
20
. Parallel
(L} - SO
— v Portion (P)
2}
:3 60 —_1
=2
o 50 R
b
“ 40 5
30
20
10
0

A Parallel Solution for grep -b

Need to get rid of streaming IO — inherently serial
Parallel streams need splittable sources

Stream Sources

Implemented by a Spl i t er at or

Li neSpl 1 terator

MappedByt eBuf f er mid
 —_—
The moving Finger ... writ | \n |Moves ...Wit| \n |Shall ... Line| \n |Nor all thy ... it | \n

\

spliterator coverage

\

new spliterator coverage

/|

rersieiang D

Splitting action of Li neSpl it erator is O(log n)
Collector no longer needs to compute index
Result (relatively independent of data size):

- sequential stream ~2x as fast as iterative solution

- parallel stream >2.5x as fast as sequential stream
- on 4 hardware threads

When to go Parallel

The workload of the intermediate operations must be great
enough to outweigh the overheads (~100ps):

— splitting
— concurrent collection
— initializing the fork/join framework

Often quoted as N x Q

/N

size of data set processing cost per element

Intermediate Operations

Parallel-unfriendly intermediate operations:

stateful ones
— need to store some or all of the stream data in memory
—sorted()

those requiring ordering
—limt()

Collectors Cost Extra!

Depends on the performance of accumulator and
combiner functions

® tolList(), toSet(), toCollection — performance normally
dominated by accumulator

® but allow for the overhead of managing multithread access to non-
threadsafe containers for the combine operation

® toMap(), toConcurrentMap() — map merging is slow. Resizing
maps, especially concurrent maps, is particularly expensive.
Whenever possible, presize all data structures, maps in
particular.

Parallel Streams in the Real World

Threads for executing parallel streams are (all but one) drawn
from the common Fork/Join pool

* Intermediate operations that block (for example on I/O) will
prevent pool threads from servicing other requests

* Fork/]Join pool assumes by default that it can use all cores
— Maybe other thread pools (or other processes) are running?

Conclusions

Performance mostly doesn’t matter

But if you must...
* sequential streams normally beat iterative solutions
* parallel streams can utilize all cores, providing

- the data is efficiently splittable

- the intermediate operations are sufficiently expensive and are
CPU-bound

- there isn’t contention for the processors

Resources

Mastering Lambdas:
Java Programming ina .
Multicore World

Best Practices for Using Lambda Expressions
and Streams

Maurice Naftalin
fo

nttp://gee.cs.oswego.edu/dl/html/StreamParallelGuidance.html

nttp://shipilev.net/talks/devoxx-Nov20 | 3-benchmarking.pdf

nttp://openjdk.java.net/projects/code-tools/jmh/

@mauricenaftalin

