
Let’s Get to the Rapids	

Understanding Java 8 Stream Performance

Philly ETE	

April 2015	


@mauricenaftalin



@mauricenaftalin

Maurice Naftalin

Developer, designer, architect, teacher, learner, writer



Repeat offender:

Maurice Naftalin
Java 5 Java 8



@mauricenaftalin

The Lambda FAQ

www.lambdafaq.org



Varian 620/i	

!

!

!

!

!

!

    
5

First Computer I Used



Agenda

– Background	


	
	
 	
 – Java 8 Streams	


	
	
 	
 – Parallelism	


	
	
 	
 – Microbenchmarking	


– Case study	


– Conclusions



Streams – Why?

• Bring functional style to Java	


• Exploit hardware parallelism – “explicit but unobtrusive”



Streams – Why?

• Intention: replace loops for aggregate operations

List<Person> people = … 
Set<City> shortCities = new HashSet<>();  
!
for (Person p : people) { 
   City c = p.getCity(); 
   if (c.getName().length() < 4 ) { 
       shortCities.add(c); 
   } 
}

instead of writing this:

8



Streams – Why?

• Intention: replace loops for aggregate operations	


• more concise, more readable, composable operations, parallelizable

Set<City> shortCities = new HashSet<>();  
!
for (Person p : people) { 
   City c = p.getCity(); 
   if (c.getName().length() < 4 ) { 
       shortCities.add(c); 
   } 
}

instead of writing this:

List<Person> people = … 
Set<City> shortCities = people.stream() 
    .map(Person::getCity)  
    .filter(c -> c.getName().length() < 4) 
    .collect(toSet());

9

we’re going to write this:



Streams – Why?

• Intention: replace loops for aggregate operations	


• more concise, more readable, composable operations, parallelizable

Set<City> shortCities = new HashSet<>();  
!
for (Person p : people) { 
   City c = p.getCity(); 
   if (c.getName().length() < 4 ) { 
       shortCities.add(c); 
   } 
}

instead of writing this:

Set<City> shortCities = people.parallelStream() 
    .map(Person::getCity)  
    .filter(c -> c.getName().length() < 4) 
    .collect(toSet());

10

we’re going to write this:



Practical Benefits of Streams?

!

Functional style will affect (nearly) all collection processing	

Automatic parallelism is useful, in certain situations	

- but everyone cares about performance!	


!

!



Parallelism – Why?

The Free Lunch Is Over	

!

http://www.gotw.ca/publications/concurrency-ddj.htm



Intel Xeon E5 2600 10-core



Microbenchmarking

Really hard to get meaningful results from a dynamic runtime:	

	
 – timing methods are flawed 	

	
 	
 	
 – System.currentTimeMillis() and System.nanoTime()	

	
 – compilation can occur at any time	

	
 – garbage collection interferes	

	
 – runtime optimizes code after profiling it for some time	

	
 – then may deoptimize it	

	
 	
 – 	
optimizations include dead code elimination



Microbenchmarking
Don’t try to eliminate these effects yourself!	

!

Use a benchmarking library	

	
 – Caliper	

	
 – JMH (Java Benchmarking Harness)	

!

Ensure your results are statistically meaningful	

!

Get your benchmarks peer-reviewed



Case Study: grep -b

The Moving Finger writes; and, having writ,	

Moves on: nor all thy Piety nor Wit	


Shall bring it back to cancel half a Line	

Nor all thy Tears wash out a Word of it.

rubai51.txt

grep -b: “The offset in bytes of a matched pattern 
is displayed in front of the matched line.”

$ grep -b 'W.*t' rubai51.txt  
44:Moves on: nor all thy Piety nor Wit 
122:Nor all thy Tears wash out a Word of it.



Because we don’t have a problem

Why Shouldn’t We Care?



Why Shouldn’t We Care?

Because we don’t have a problem	

- No performance target!	




Because we don’t have a problem	

- No performance target!	


Else there is a problem, but not in our process

Why Shouldn’t We Care?



Because we don’t have a problem	

- No performance target!	


Else there is a problem, but not in our process	

- The OS is struggling!

Why Shouldn’t We Care?



Because we don’t have a problem	

- No performance target!	


Else there is a problem, but not in our process	

- The OS is struggling!	


Else there’s a problem in our process, but not in the code

Why Shouldn’t We Care?



Because we don’t have a problem	

- No performance target!	


Else there is a problem, but not in our process	

- The OS is struggling!	


Else there’s a problem in our process, but not in the code	

- GC is using all the cycles!	


	
	


Why Shouldn’t We Care?



Because we don’t have a problem	

- No performance target!	


Else there is a problem, but not in our process	

- The OS is struggling!	


Else there’s a problem in our process, but not in the code	

- GC is using all the cycles!

Why Shouldn’t We Care?

!

	
 Else there’s a problem in the code, but not a stream problem	




41 122Nor …Moves … 36 44

grep -b: Collector solution

0The … 44[ , 42 80Shall … ]

41 42Nor …Moves … 36 440The … 44[ , 42 0Shall … ]

, ,

,] [

Moves … 36 0 41 0Nor …42 0Shall …0The … 44



grep -b: Collector solution

44 0The moving … writ, 

“Moves on: … Wit”

44 0The moving … writ, 36 44Moves on: … Wit

][

][ ,

[ ]

Supplier “The moving … writ,” 

accumulator

accumulator



41 122Nor …Moves … 36 44

grep -b: Collector solution

0The … 44[ , 42 80Shall … ]

41 42Nor …Moves … 36 440The … 44[ , 42 0Shall … ]

, ,

,] [

80



Because we don’t have a problem	

- No performance target!	


Else there is a problem, but not in our process	

- The OS is struggling!	


Else there’s a problem in our process, but not in the code

Why Shouldn’t We Care?

- GC is using all the cycles!	


	
 Else there’s a problem in the code, but not a stream problem	

- The bottleneck is elsewhere!	




What’s wrong?
!

• Possibly very little 	

- overall performance comparable to Unix grep -b	


• Can we improve it by going parallel?



Serial vs. Parallel

• The problem is a prefix sum – every element is the sum of 
the preceding ones.	

- Combiner is O(n)	


• The source is streaming IO (BufferedReader.lines())	


• Amdahl’s Law strikes:



A Parallel Solution for grep -b

Need to get rid of streaming IO – inherently serial	

Parallel streams need splittable sources	




Stream Sources

Implemented by a Spliterator



Moves …Wit

LineSpliterator

The moving Finger … writ \n Shall … Line Nor all thy … it\n \n \n

spliterator coverage
new spliterator coverage

MappedByteBuffer mid



Parallelizing grep -b

• Splitting action of LineSpliterator is O(log n)	

• Collector no longer needs to compute index	

• Result (relatively independent of data size):	

	
	
 - sequential stream ~2x as fast as iterative solution	

	
	
 - parallel stream >2.5x as fast as sequential stream	

	
	
 	
 	
 - on 4 hardware threads



When to go Parallel

The workload of the intermediate operations must be great 
enough to outweigh the overheads (~100µs):	

	
	
 – splitting	

	
	
 – concurrent collection	

	
	
 – initializing the fork/join framework	

!

Often quoted as N x Q	

!

size of data set processing cost per element



Intermediate Operations

Parallel-unfriendly intermediate operations:	

!

stateful ones	

	
 	
 – need to store some or all of the stream data in memory	

	
 	
 	
 – sorted()	

!

those requiring ordering	

	
 	
 – limit()	


	
	




Collectors Cost Extra!
Depends on the performance of accumulator and 
combiner functions	


• toList(), toSet(), toCollection – performance normally 
dominated by accumulator	


•  but allow for the overhead of managing multithread access to non-
threadsafe containers for the combine operation	


• toMap(), toConcurrentMap() – map merging is slow. Resizing 
maps, especially concurrent maps,  is particularly expensive. 
Whenever possible, presize all data structures, maps in 
particular.



Threads for executing parallel streams are (all but one) drawn 
from the common Fork/Join pool	

!

• Intermediate operations that block (for example on I/O) will 
prevent pool threads from servicing other requests	

!

• Fork/Join pool assumes by default that it can use all cores	

	
	
 – Maybe other thread pools (or other processes) are running?	


Parallel Streams in the Real World



Performance mostly doesn’t matter	

!

But if you must…	

• sequential streams normally beat iterative solutions	

• parallel streams can utilize all cores, providing 	


- the data is efficiently splittable	

- the intermediate operations are sufficiently expensive and are 

CPU-bound	

- there isn’t contention for the processors

Conclusions



@mauricenaftalin

Resources

http://gee.cs.oswego.edu/dl/html/StreamParallelGuidance.html	

http://shipilev.net/talks/devoxx-Nov2013-benchmarking.pdf	

http://openjdk.java.net/projects/code-tools/jmh/	

!


