b ,—:’.r/,
) A Lt AR

2o

Maurice Naftalin

Developer, designer, architect, teacher, learner, writer

#parallelready @mauricenaftalin

Maurice Naftalin

Repeat offender: Java 5

Speed Up the Java Development Process

Mastering Lambdas: ;
Java Programming ina .
Multicore World

(Generics

and Collections

Best Practices for Using Lambda Expressions
and Streams

Oracle
M Nafial Maurice Naftalin Press
Ol . laurice Naflalin % o s
REILLY &Philp"Wadién crmeR R Copyrighted Material

Copyrighted Material

#parallelready @mauricenaftalin

#parallelready

The Lambda FAQ

HOME ABOUT THE LAMBDA FAQ LAMBDA RESOURCES ASK THE FAQ

Maurice Naftalin's Lambda FAQ Posts 9 Comments

Your questions answered: all about Lambdas and friends

Fundamentals

What is a lambda expression?
Why are lambda expressions
being added to Java?

What is a functional interface?
What is the type of a lambda
expression?

Are lambda expressions objects?
Where can lambda expressions
be used?

What are the scoping rules for
lambda expressions?

Can lambda expressions be used
to define recursive functions?

virtual extension methods—they are having a greater impact on how we program in Java than any other change in the history of the
platform.

I initially started to learn about the new features so that Phil Wadler and I could consider a second edition of our book Java
Generics and Collections. But as I learned more about the subtleties of the changes, it became clear that an entire new book
(Mastering Lambdas) was needed. Writing that has used up my spare cycles for nearly a year, but I'm happy now to turn my
attention back to this FAQ. And though of course I'm urging you to buy the book, it's not the end of wisdom on the subject: as I learn
more and we get greater experience in using the new features, new understanding can be reflected here.

The new features weren't all easy to understand at first, so this FAQ started with the intention of helping you over some of the
obstacles that tripped me up. But then more advanced questions appeared, so I now hope that you will find it useful whether you are
already familiar with lambda expressions or encountering them for the first time. All comments and contributions are welcome. I'm
very pleased to acknowledge the continuing input from the Oracle Java Language and Tools team, especially Stuart Marks and Brian

www.lambdafaqg.org

@mauricenaftalin

|ldeas in the Stream API

— Pipes/Filters

— Parallelism

® Recursive decomposition
® Stream-transforming (aka intermediate) operations

® Parallel merging

#parallelready @mauricenaftalin

Pipes and Filters

® Venerable Unix tool-building pattern:

ps -ef | grep login | cut -c 50- | head

® and in Enterprise Integration Patterns

Pipe Pipe . Pipe Pipe
——»| Decrypt Authenticate De-Dup t
N
W
Incorming Fitter Fitter Fitter ‘Clean’
Order Order

#parallelready @mauricenaftalin

Pipes and Filters

Advantages of this pattern

ps -ef | grep login | cut -c 50- | head

= no intermediate variables
= less (or no) intermediate storage
= lazy evaluation

= flexible tool-building:

#parallelready @mauricenaftalin

#parallelready

Pipes and Filters

Doug Mcllroy, inventor of the Unix pipe:

Write programs that do one thing well.
Write programs to work together.
WK X DOX PR EDE KD M BORSK X DKXLIXS

@mauricenaftalin

Example Domain

Person
city: City
name: String
age: int

Person any = new Person(At hens, "Any", 21);

Li st <Person> people = Arrays.asList(jon, any, bill);

#parallelready @mauricenaftalin

Pipes and Filters in Java

Is everyone
an adult?

Print the names of
the inhabited cities

#parallelready

bool ean al | Adults = peopl e. stream)
. mapTol nt (Person: : get Age)
.allMatch(a -> a >= 21);

peopl e. stream)
. map(Person::getCity)
.forEach(Systemout::println);

@mauricenaftalin

Streams

Sequence of values

Not a collection — may be partially evaluated or exhausted

Like an iterator, yielding elements for processing

Not like an iterator, not associated with any storage mechanism
Sources: collections, arrays, generators, |O channels

Can be

- parallel

- infinite

Primitive specialisations: IntStream, LongStream, DoubleStream

Sources — sequential streams

Stream Sources:
— supply elements one at a time
— implementations of j ava. uti |l . Spliterator
— 40+ methods in platform classes

— including Collection.stream

bool ean al | Adults = peopl e. stream)
. mapTol nt (Person: : get Age)
.allMatch(a -> a >= 21);

#parallelready @mauricenaftalin

Intermediate Operations

Filtering filter()
Mapping map()
One-to-Many Mapping f1atMap()
Debugging peek()

Sorting/Deduplicating

sorted(), distinct()

Truncating

skip(), limt()

#parallelready

@mauricenaftalin

- filter()

filter(s -> s.length() < 4)

Stream<String> Stream<String>

gy
\\,
\L Predicate<String j

#parallelready @mauricenaftalin

map()

map(Person: :getCity)

Stream<Person> Stream<City>

dilly Achdos |

Function<Person,City j

#parallelready @mauricenaftalin

“ peek()

peek(System.out: :println)

Stream<T>

Tl % Consumer<T> j

System.out::printin -

#parallelready @mauricenaftalin

Stream<String>

a

m

Y

#parallelready

flatMap Tolnt()

flatMapToInt(String: :chars)

|

J\

N\

IntStream

Function<String,IntStream> j

@mauricenaftalin

Sinks — sequential streams

Stream Sinks (terminal operations):

Search findFirst(), findAny()

anyMatch(), all Match()
Side-effecting f or Each(), forEachOrdered()
Reductions

Parallelism

“The best way to write parall€l
applications is not to have to
think about parallelism.”

Guy Stedle

#parallelready @mauricenaftalin

N

Automated Resource Management

Assemblers
Linkers

Register allocation
Heap management
Virtual memory
Parallelisation

#parallelready @mauricenaftalin

Retooling

Some old habits won’t work any more

linear decomposition

= processing one thing at a time to accumulate results

No more accumulators!

#parallelready @mauricenaftalin

Seriously, No More Accumulators??

No more accumulators!

Divide And Conquer algorithms instead
= symmetric merge operations
Major impact on terminal operations
= almost all are accumulations of some kind

#parallelready @mauricenaftalin

Simple Example — Summation

® Using an accumulator:

int[] vals = new int[100];

0 1 2 3
Arrays.setAll (vals, 1 ->1); \ /
+
int sum = O; \ /
for (int 1 =0 ; I <wvals.length ; 1++) { +
sum += val s[i]; AN
+

}

#parallelready @mauricenaftalin

Simple Example — Summation

® Avoiding an accumulator:

IntStream 0,
reduce(IntBinaryOperator) Optionallnt
reduce(int, IntBinaryOperator) int

#parallelready @mauricenaftalin

Simple Example — Summation

® Avoiding an accumulator:

Int[] vals = new int[100];

0 1 2 3
Arrays.setAll(vals, i ->1); \ / \
Optional I nt sum = Arrays. streanmval s) "‘\ //
+
N\
+

.reduce((a,b) -> a + b);

A

BinaryOperator must be associative!
at(b+c)=(@+b)+c

#parallelready @mauricenaftalin

Reduction of Primitives

0

2

0 \ 4
/ \+ /
|dentity \

Bmar)'OPerator \ /

#parallelready

3

4

\//’

@mauricenaftalin

Reduction of Mutable Objects!?

el

el

e?2

[]
Identity / \

Accumulator——

comb.ner/\\ /

#parallelready

combine

e3

e4

e5

[Not ’Pava\\e\—’kead\j

|

@mauricenaftalin

Collector

el el e?2 e3 e4 e5

()->[] ()->[1 | J

N/ ' AN
/ add 4 add/
AN \

Supplier add add

<
&
<

Accumulator——

comb.ner/\\ /

combine

#parallelready @mauricenaftalin

Using the Predefined Collectors

-

framework provides
the Supplier

methods in Col | ect or s class

Predefined Standalone Collectors — frj

e toList(), toSet(), toMap(), joining()

(user provides j

e toMap(), toCollection() —_the Supplier
e groupi ngBy(), partitioningBy())
produce a
Lclassiﬁcation map

#parallelready @mauricenaftalin

Simple Collector — toSet()

peopl e.strean().collect(Collectors.toSet())

4 \ |

Stream<Person> Set<Person>

3oty =—{ , , }

\. J

A

|

[Collector<Person,?,Set<Person>]

#parallelready @mauricenaftalin

toMap(Function<T,K> keyMapper,
~Function<T,U> valueMapper)

peopl e. strean(). col | ect (
Col | ectors. t oMap(
Person: :getCty,
Per son: : get Nane))

#parallelready @mauricenaftalin

toMap(Function<T,K> keyMapper,
~Function<T,U> valueMapper)

()
toMap() Map<City,String>
—
Person::getCity —»
Stream<Person> __—
b"')’ L‘W’S Person::getName I =
—
\ J

\

/

[Collector<Person,?,Map<City,String> j

#parallelready @mauricenaftalin

_ GOUPINGOV(TUNGION<T, 1> GIasewer)

Uses the classifier function to make a classification mapping

Like toMap(), except that the values placed in the map are lists of the
elements, one List corresponding to each classification key:

For example, use Person.getCity() to make a Map<City,List<Person>>

Map<Ci ty, Li st <Person>> peopl eByGCty = peopl e.strean().
col | ect (Col | ectors. groupi ngBy(Person::getCity));

#parallelready @mauricenaftalin

groupingBy(Function<Person,City>)

4 . N
groupingBy() Map<City,List<Person>>
Stream<Person>) [’]] N
Classifier
By lars—rs S
Person— City —
[]
\ 4
A

|

[Collector<Person,?,Map<City,List<Person>>>j

#parallelready @mauricenaftalin

Concurrent Collection

Thread safety is guaranteed by the framework

® Even for non-threadsafe containers!

But at a price... So what if your container is already threadsafe!?

® a concurrent Map implementation?

Every overload of t oMap() and gr oupi ngBy() has a dual
® toConcurrentMap(...)

® groupingByConcurrent(...)

Writin

Why would you want to!?
® accumulate to a container that doesn’t implement Col | ecti on
® share state between values being collected

® to show how to parallelize “iterative-looking” problems

Oprah’s Problem

How to find a book!?

RN TN S W v mern e amys |
{
@ |

N\.«. Z::c.:./a\.;_k EDWAKD VL JONES

LI ST St A e T 8 DT e T e SO L A e

KEN FOLLETT
— —_— — — 1
THE PILLARS of the EARTH i

Discover the Power Within You
A FINE BALANCE MiNTRY
Erie WIESEL

ible W.A::: aia kinesorves I

The Poisonwood B

172
1104 400

384

640

144 239

640 624

Page count —» 336

What Oprah Needs

New Earth— 0
Poisonwood Bible— 336 Cumulative
Night . 974 page counts
A Fine Balance—1120

Creating A Partial Solution

“NE”|336| O , “PB” 1640 336] [“Night” | 144 “AFB” 1624|144
)}
combiner
[“NE”|336| O “PB”|640|336| | “Night” |144(976| |“AFB”|624|1120]

Supplier and Accumulator

supplier aNewEarth thePoisonwoodBible

!
[1<

accumulator

~

[“NE” 336/ O]
accumulator

\
NV

[“NE”|336| O , ‘PB” |640 336]

Combiner

e
40 336]

\

“AFB” 624|144

976

N\

“AFB”

“NE”[336] 0 | |“PB"|6 [“Night” |
combiner
["Ne"[336] 0] [PB"[e40]336] [“Night"[144]976

624 II20]

Implemented by a Spl i t er at or

#parallelready

Sources — parallel streams

@mauricenaftalin

Visualizing Stream Operations

Intermediate Op(s)

Spliterator y0 (Mutable)
Reduction
x0
yl
yd
X2 v2
X3
y3

#parallelready @mauricenaftalin

Visualizing Stream Operations

Intermediate Op(s)

Spliterator y0 (Mutable)
Reduction
x0
yl
yd
X2 v2
X3
y3

#parallelready @mauricenaftalin

Visualizing Stream Operations

Spliterator

x0

X|
X2

x3

Intermediate Op(s)

x0

X2

x3

peek(System.out::print)

(Mutable)
Reduction

What Does Parallel-Ready Mean!?

— sequential execution is no longer the default

— it’s still often more efficient, but that will change

— code must be agnostic about its execution mode

— operations in the Stream API have equivalent effect

= sequential or parallel

= may be equally non-deterministic
— decouples execution mode from functional behavior
— parallel-ready is not only about parallel execution!

= or even mainly, for now

#parallelready @mauricenaftalin

S50, Is Your Code Parallel-Ready?

Most unlikely. But it can be!

The Stream API provides a framework and a lot of support
for writing PR code.You just need to co-operate with it.

= it depends on you behaving sanely

#parallelready @mauricenaftalin

Using Streams Safely

Rules in the JavaDoc for j ava. util . stream
Stateless behavior:

= avoid stateful behavioral parameters

= “one whose result depends on any state which might change
during the execution of the stream pipeline”

#parallelready @mauricenaftalin

Using Streams Safely

Rules in the JavaDoc for j ava. util . stream

Non-interference
= don’t modify a stream’s data source during execution

= you may if it’s a thread-safe class

Don’t rely on side-effects
= use for debugging only

#parallelready @mauricenaftalin

Conclusion

The Streams API offers a framework for
= programming bulk data operations in parallel-ready style

= easy parallellism, with thread-safe access to non-threadsafe containers

All we have to do is co-operate with it!
Parallel-Ready code starts today!

#parallelready @mauricenaftalin

Resources

NN
PN

www.lambdafaq.org P
www.masteringlambdas.org Eoia Prosamtring n & (8

Multicore World

Best Practices for Using Lambda Expressions
and Streams

Maurice Naftalin
Foreword by Brian Goetz

#parallelready @mauricenaftalin

