

We are not using the "Zed" word.

We are not using the "Zed" word.
Ok, so I lied a little...

How I've Traditionally Seen scalazHow I've Traditionally Seen scalaz
In the past, I've seen scalaz as fairly intimidating

People always spoke about it being more
"pure"/"haskelly"/"mathy"

I'll be the first to admit: I don't have a CS degree and sort
of suck at math

"What's wrong with what I have in standard Scala?!?"

The Reality about scalaz?The Reality about scalaz?

IT'S MAGICIT'S MAGIC

The Road to scalazThe Road to scalaz
Once I got started, it was hard to
stop

The constructs are powerful and
useful

I am by no means an expert: just
an excited amateur

This is not a category theory or
haskell talk: Let's be practical

The Road to scalazThe Road to scalaz
I want you to learn:

"Hey! This stuff may be
useful!"

I am not going to teach you:

"A monad is a monoid in the
category of endofunctors,
what's the problem?"

The Road to scalazThe Road to scalaz
Problems to solve...Problems to solve...

Our API server was part of a
larger Angular.js application:
error passing was hard

Providing clear errors &
validating input was a
problem

500s & generic exceptions
complicate and frustrate
frontend devs' debugging

Helping Developers
 Help Themselves

An error occurred

API Received bad/invalid
data? (e.g. JSON Failed to
parse)

Database failed?

Hovercraft filled up with eels?

What if multiple errors occurred?

How do we communicate all of
this effectively?

Scala's Either: The LimitationsScala's Either: The Limitations

Scala's builtin Either is a commonly used tool,
allowing Left and Right projections

By convention Left indicates an error, while Right indicates
a success

Good concept, but there are some limitations in
interaction

Scala's Either: The LimitationsScala's Either: The Limitations
scala> val success = Right("Success!")
success: scala.util.Right[Nothing,String] = Right(Success!)

scala> success.isRight
res2: Boolean = true

scala> success.isLeft
res3: Boolean = false

scala> for {
 | x <- success
 | } yield x
<console>:10: error: value map is not a member of scala.util.Right[Nothing,String]
 x <- success
 ^

Not a monad. Pain in the ass to extract.

Disjunctions as an AlternativeDisjunctions as an Alternative
scalaz' \/ (aka "Disjunction") is similar to "Either"

By convention, the right is success and the left failure

The symbol -\/ is "left"
The symbol \/- is "right"

Disjunctions as an AlternativeDisjunctions as an Alternative
Disjunctions assume we prefer success (the right)

This is also known as "Right Bias"

for comprehensions, map, and flatMap statements
unpack where "success" \/- continues, and "failure" -\/
aborts

def query(arg: String): Error \/ Success

Best Practice

When declaring types, prefer infix notation, i.e.

over "standard" notation such as

def query(arg: String): \/[Error, Success]

Disjunctions as an AlternativeDisjunctions as an Alternative

import scalaz._
import Scalaz._

scala> "Success!".right
res7: scalaz.\/[Nothing,String] = \/-(Success!)

scala> "Failure!".left
res8: scalaz.\/[String,Nothing] = -\/(Failure!)

Postfix Operators (.left & .right) allow us to
wrap an existing Scala value to a disjunction

import scalaz._
import Scalaz._

scala> \/.left("Failure!")
res10: scalaz.\/[String,Nothing] = -\/(Failure!)

scala> \/.right("Success!")
res12: scalaz.\/[Nothing,String] = \/-(Success!)

We can also invoke .left & .right methods on the
Disjunction singleton for the same effect...

import scalaz._
import Scalaz._

scala> -\/("Failure!")
res9: scalaz.-\/[String] = -\/(Failure!)

scala> \/-("Success!")
res11: scalaz.\/-[String] = \/-(Success!)

... or go fully symbolic with specific constructors:

-\/ for left

\/- for right

Digression: Scala Digression: Scala OptionOption
Scala Option is a commonly used container, having
 a None and a Some subtype

Like \/ it also has a bias towards "success": Some

Comprehension over it has issues with "undiagnosed
aborts"

case class Address(city: String)

case class User(first: String,
 last: String,
 address: Option[Address])

case class DBObject(id: Long,
 user: Option[User])

val brendan =
 Some(DBObject(1, Some(User("Brendan", "McAdams", None))))

val someOtherGuy =
 Some(DBObject(2, None))

for {
 dao <- brendan
 user <- dao.user
} yield user

/* res13: Option[User] = Some(User(Brendan,McAdams,None)) */

for {
 dao <- someOtherGuy
 user <- dao.user
} yield user

/* res14: Option[User] = None */

What went wrong?

\/ to the Rescue\/ to the Rescue
Comprehending over groups of
Option leads to "silent failure"

Luckily, scalaz includes implicits
to help convert a Option to a
Disjunction

\/ right bias makes it easy to
comprehend

On a left, we'll get potentially
useful information instead
of None

None \/> "No object found"
/* res0: scalaz.\/[String,Nothing] = -\/(No object found) */

None toRightDisjunction "No object found"
/* res1: scalaz.\/[String,Nothing] = -\/(No object found) */

Some("My Hovercraft Is Full of Eels") \/> "No object found"
/* res2: scalaz.\/[String, String] = \/-(My Hovercraft Is Full of Eels) */

Some("I Will Not Buy This Record It Is Scratched")
 .toRightDisjunction("No object found")
/* res3: scalaz.\/[String, String] =
 \/-(I Will Not Buy This Record, It Is Scratched") */

for {
 dao <- brendan \/> "No user by that ID"
 user <- dao.user \/> "Join failed: no user object"
} yield user
/* res0: scalaz.\/[String,User] = \/-(User(Brendan,McAdams,None)) */

for {
 dao <- someOtherGuy \/> "No user by that ID"
 user <- dao.user \/> "Join failed: no user object"
} yield user
/* res1: scalaz.\/[String,User] = -\/(Join failed: no user object) */

Suddenly we have much more useful failure information.

But what if we want to do something beyond
comprehensions?

ValidationValidation
Validation looks similar to \/ at
first glance

(And you can convert
between them)
Subtypes are Success and
Failure

Validation is not a monad

Validation is an applicative
functor, and many can be chained
together

If any failure in the chain, failure
wins: All errors get appended
together

val brendanCA =
 DBObject(4,
 Some(User("Brendan", "McAdams",
 Some(Address("Sunnyvale"))))
)

val cthulhu =
 DBObject(5,
 Some(User("Cthulhu", "Old One",
 Some(Address("R'lyeh"))))
)

val noSuchPerson = DBObject(6, None)

val wanderingJoe =
 DBObject(7,
 Some(User("Wandering", "Joe", None))
)

def validDBUser(dbObj: DBObject): Validation[String, User] = {
 dbObj.user match {

 case Some(user) =>
 Success(user)

 case None =>
 Failure(s"DBObject $dbObj does not contain a user object")

 }
}

validDBUser(brendanCA)
/* Success[User] */

validDBUser(cthulhu)
/* Success[User] */

validDBUser(noSuchPerson)
/* Failure("... does not contain a user object") */

validDBUser(wanderingJoe)
/* Success[User] */

def validAddress(user: Option[User]): Validation[String, Address] = {
 user match {

 case Some(User(_, _, Some(address))) if postOfficeValid(address) =>
 address.success

 case Some(User(_ , _, Some(address))) =>
 "Invalid address: Not recognized by postal service".failure

 case Some(User(_, _, None)) =>
 "User has no defined address".failure

 case None =>
 "No such user".failure

 }
}

validAddress(brendanCA.user)
/* Success(Address(Sunnyvale)) */

// let's assume R'Lyeh has no mail carrier
validAddress(cthulhu.user)
/* Failure(Invalid address: Not recognized by postal
service) */

validAddress(noSuchPerson.user)
/* Failure(No such user) */

validAddress(wanderingJoe.user)
/* Failure(User has no defined address) */

Sticking it all togetherSticking it all together

scalaz has a number of applicative operators to combine
Validation results

> and < are two of the ones you'll run into first

*> takes the right hand value and discards the left

<* takes the left hand value and discards the right

Errors "win"

1.some *> 2.some
/* res10: Option[Int] = Some(2) */

1.some <* 2.some
/* res11: Option[Int] = Some(1) */

1.some <* None
/* res13: Option[Int] = None */

None *> 2.some
/* res14: Option[Int] = None */

BUT: with Validation it will chain together all errors that
occur instead of short circuiting

validDBUser(brendanCA) *> validAddress(brendanCA.user)
/* res16: scalaz.Validation[String,Address] =
Success(Address(Sunnyvale)) */

validDBUser(cthulhu) *> validAddress(cthulhu.user)
/* res17: scalaz.Validation[String,Address] =
Failure(Invalid address: Not recognized by postal service) */

validDBUser(wanderingJoe) *> validAddress(wanderingJoe.user)
/* res19: scalaz.Validation[String,Address] =
Failure(User has no defined address) */

validDBUser(noSuchPerson) *> validAddress(noSuchPerson.user)
/* res18: scalaz.Validation[String,Address] =
 Failure(DBObject DBObject(6,None) does not contain a user objectNo such user)*/

Wait. WTF happened to that last one?

The way *> is called on Validation, it appends all errors
together...

We'll need another tool if we want this to make sense

validDBUser(brendanCA) *> validAddress(brendanCA.user)
/* res16: scalaz.Validation[String,Address] =
Success(Address(Sunnyvale)) */

validDBUser(cthulhu) *> validAddress(cthulhu.user)
/* res17: scalaz.Validation[String,Address] =
Failure(Invalid address: Not recognized by postal service) */

validDBUser(wanderingJoe) *> validAddress(wanderingJoe.user)
/* res19: scalaz.Validation[String,Address] =
Failure(User has no defined address) */

validDBUser(noSuchPerson) *> validAddress(noSuchPerson.user)
/* res18: scalaz.Validation[String,Address] =
 Failure(DBObject DBObject(6,None) does not contain a user objectNo such user)*/

NonEmptyList is a
scalaz List that is guaranteed to
have at least one element

Commonly used
with Validation to allow accrual
of multiple error messages

There's a type alias
for Validation[NonEmptyList[L],
R] of ValidationNEL[L, R]

Like a list, append allows
elements to be added to the end

NonEmptyListNonEmptyList

def validDBUserNel(dbObj: DBObject): Validation[NonEmptyList[String], User] = {
 dbObj.user match {

 case Some(user) =>
 Success(user)

 case None =>
 Failure(NonEmptyList(s"DBObject $dbObj does not contain a user object"))
 }
}

We can be explicit, and construct a NonEmptyList by hand

def validAddressNel(user: Option[User]): ValidationNel[String, Address] = {
 user match {

 case Some(User(_, _, Some(address))) if postOfficeValid(address) =>
 address.success

 case Some(User(_ , _, Some(address))) =>
 "Invalid address: Not recognized by postal service".failureNel

 case Some(User(_, _, None)) =>
 "User has no defined address".failureNel

 case None =>
 "No such user".failureNel
 }
}

Or we can use some helpers, calling .failureNel, and declaring
a ValidationNel return type.

validDBUserNel(noSuchPerson) *> validAddressNel(noSuchPerson.user)
/* res20: scalaz.Validation[scalaz.NonEmptyList[String],Address] =
Failure(NonEmptyList(
 DBObject(6,None) does not contain a user object,
 No such user
))
*/

Now, we get a list of errors - instead of a globbed string

One Last OperatorOne Last Operator
scalaz provides another useful
applicative operator for us

|@| combines all of the Failure
and Success conditions

To handle Successes we provide
 a PartialFunction

(validDBUserNel(brendanCA) |@| validAddressNel(brendanCA.user)) {
 case (user, address) =>
 s"User ${user.first} ${user.last} lives in ${address.city}"
}

// "User Brendan McAdams lives in Sunnyvale"

Our other users will return an NEL of errors, like with *>

(validDBUserNel(noSuchPerson) |@| validAddressNel(noSuchPerson.user)) {
 case (user, address) =>
 s"User ${user.first} ${user.last} lives in ${address.city}"
}

// Failure(
// NonEmptyList(DBObject DBObject(6,None) does not contain a user object,
// No such user))

noSuchPerson gets a combined list

One last One last function:function: Error Handling Error Handling
Dealing sanely with errors is always a challenge

There are a few ways in the Scala world to avoid try/catch,
such as scala.util.Try

scalaz' \/ offers the Higher Order
Function fromTryCatchThrowable, which catches any
specific exception, and returns a Disjunction

You specify your return type, the type of exception to
catch, and your function body...

"foo".toInt

/* java.lang.NumberFormatException: For input string: "foo"
 at java.lang.NumberFormatException.forInputString ...
 at java.lang.Integer.parseInt(Integer.java:492)
 at java.lang.Integer.parseInt(Integer.java:527) */

Here's a great function to wrap...

\/.fromTryCatchThrowable[Int, NumberFormatException] {
 "foo".toInt
}

/* res9: scalaz.\/[NumberFormatException,Int] =
 -\/(java.lang.NumberFormatException:
 for input string: "foo") */

Note the reversed order of arguments: Right type, then Left
type

\/.fromTryCatchThrowable[Int, Exception] {
 "foo".toInt
}

/* res9: scalaz.\/[NumberFormatException,Int] =
 -\/(java.lang.NumberFormatException:
 for input string: "foo") */

We can also be "less specific" in our exception type to catch
more

\/.fromTryCatchThrowable[Int, java.sql.SQLException] {
 "foo".toInt
}

/*
java.lang.NumberFormatException: For input string: "foo"
 at java.lang.NumberFormatException.forInputString(NumberFormatException.java:65)
 at java.lang.Integer.parseInt(Integer.java:580)
 at java.lang.Integer.parseInt(Integer.java:615)
...
*/

Our exception type matters: if an Exception doesn't match it
will still be thrown

\/.fromTryCatchNonFatal[Int] {
 "foo".toInt
}
/* res14: scalaz.\/[Throwable,Int] =
 -\/(java.lang.NumberFormatException:
 For input string: "foo") */

There is also \/.tryCatchNonFatal which will
catch anything classified as scala.util.control.NonFatal

Final Thought: On NamingFinal Thought: On Naming
From the skeptical side, the common use of symbols gets...
interesting

Agreeing on names - at least within your own team - is
important

Although it is defined in the file "Either.scala",
calling \/ "Either" gets confusing vs. Scala's builtin Either

Here's a few of the names I've heard used in the
community for |@| (There's also a unicode alias of ⊛)

OinkOink

Cinnabon/Cinnamon BunCinnabon/Cinnamon Bun

Chelsea Bun / Pain aux RaisinsChelsea Bun / Pain aux Raisins

Tie FighterTie Fighter

Princess LeiaPrincess Leia

Admiral AckbarAdmiral Ackbar

ScreamScream

Scream 2?Scream 2?

Home AloneHome Alone

Pinkie PiePinkie Pie

Some Resources...Some Resources...

Eugene Yokota's free website, "Learning Scalaz"

http://eed3si9n.com/learning-scalaz/

Learn some Haskell! I really like "Learn You A Haskell For
Great Good" by Miran Lipovača

http://learnyouahaskell.com

Questions?Questions?

