- -
BRI s Z551 59

Brendan McAdams l@l‘lll

We are not using the "Zed" word.

We are net using the "Zed" word.
Ok, so | lied a little...

=N
XYWL

How l've Traditionally Seen scalaz

In the past, I've seen scalaz as fairly intimidating

People always spoke about it being more
"pure"/"haskelly"/"mathy"

I'll be the first to admit: | don't have a CS degree and sort
of suck at math

"What's wrong with what | have in standard Scala?!?"

The Reality about scalaz?

l: wn

ITS MAGIC

The Road to scalaz

e Once l got started, it was hard to
stop

e The constructs are powerful and
useful

e | am by no means an expert: just
an excited amateur

e Thisis not a category theory or
haskell talk: Let's be practical

The Road to scalaz

e | wantyou tolearn:

= "Hey! This stuff may be
useful!"

e | am not going to teach you:

= "A monad is a monoid in the
category of endofunctors,
what's the problem?"

The Road to scalaz

Problems to solve...

e Our APl server was part of a
larger Angular.js application:
error passing was hard

= Providing clear errors &
validating input was a
problem

= 500s & generic exceptions
complicate and frustrate
frontend devs' debugging

Helping Developers
Help Themselves

e Anerror occurred
= AP| Received bad/invalid

data? (e.g. JSON Failed to
parse)

m Database failed?

= Hovercraft filled up with eels?

e \What if multiple errors occurred?

e How do we communicate all of
this effectively?

Scala’s Either: The Limitations

e Scala's builtin Either is a commonly used tool,
allowing Left and Right projections

e By convention Left indicates an error, while Right indicates
a success

e Good concept, but there are some limitations in
interaction

Scala’s Either: The Limitations

scala> val success = Right("Success!")
success: scala.util.Right[Nothing,String] = Right(Success!)

scala> success.isRight
res2: Boolean = true

scala> success.isLeft
res3: Boolean = false

scala> for {
| X <- success
| } vield x
<console>:10: error: value map is not a member of scala.util.Right[Nothing,Strir
x <- success

A

Not a monad. Pain in the ass to extract.

Disjunctions as an Alternative

e scalaz'\/ (aka "Disjunction") is similar to "Either"

e By convention, the right is success and the left failure

= The symbol -V is "left"
= The symbol \/-is "right"

Disjunctions as an Alternative

e Disjunctions assume we prefer success (the right)
e Thisis also known as "Right Bias"

e for comprehensions, map, and flatMap statements
unpack where "success" \/- continues, and "failure" -\/
aborts

Disjunctions as an Alternative

Best Practice
When declaring types, prefer infix notation, i.e.

def query(arg: String): Error \/ Success

over "standard" notation such as

def query(arg: String): \/[Error, Success]

import scalaz.
import Scalaz.

scala> "Success!".right
res7: scalaz.\/[Nothing,String] = \/-(Success!)

scala> "Failure!".left
res8: scalaz.\/[String,Nothing] = -\/(Failure!)

Postfix Operators (.left & .right) allow us to
wrap an existing Scala value to a disjunction

import
import

scala>

reslO:

scala>
resl2:

scalaz.
Scalaz.

\/.left("Failure!")
scalaz.\/[String,Nothing] = -\/(Failure!)

\/.right("Success!")
scalaz.\/[Nothing,String] = \/-(Success!)

We can also invoke .left & .right methods on the

Disjunction singleton for the same effect...

import scalaz.
import Scalaz.

scala> -\/("Failure!")
res9: scalaz.-\/[String] = -\/(Failure!)

scala> \/-("Success!")
resll: scalaz.\/-[String] = \/-(Success!)

... or go fully symbolic with specific constructors:
-\/ for left
\/- for right

Digression: Scala Option

e Scala Option is acommonly used container, having
a None and a Some subtype

e |ike\ it also has abias towards "success": Some

e Comprehension over it has issues with "undiagnosed
aborts"

case class Address(city: String)

case class User(first: String,
last: String,
address: Option[Address])

case class DBObject(id: Long,
user: Option[User])

val brendan =
Some (DBObject (1, Some(User('Brendan", "McAdams'", None))))

val someOtherGuy =
Some (DBObject (2, None))

What went wrong?

\/ to the Rescue

Comprehending over groups of
Option leads to "silent failure"

Luckily, scalaz includes implicits T
to help convert a Option to a
Disjunction

\/ right bias makes it easy to
comprehend

On a left, we'll get potentially
useful information instead
of None

for {
dao <- brendan \/> "No user by that ID"
user <- dao.user \/> "Join failed: no user object"
} yield user
/* resO: scalaz.\/[String,User] = \/-(User(Brendan,McAdams,None)) */

for {
dao <- someOtherGuy \/> "No user by that ID"
user <- dao.user \/> "Join failed: no user object"
} yield user
/* resl: scalaz.\/[String,User] = -\/(Join failed: no user object) */

Suddenly we have much more useful failure information.

But what if we want to do something beyond
comprehensions?

Validation ’ -5
e Validation looks similar to\/ at
first glance ' '

= (And you can convert
between them)

= Subtypes are Success and
Failure

e Validation is not a monad

e Validation is an applicative
functor, and many can be chained
together

e |f any failure in the chain, failure
wins: All errors get appended
together

val brendanCA =
DBObject (4,
Some (User ("Brendan", "McAdams",
Some (Address ("Sunnyvale"))))

val cthulhu =
DBObject (5,
Some (User ("Cthulhu", "Old One",
Some (Address("R'lyeh"))))

)

val noSuchPerson DBObject (6, None)

val wanderingJdoe
DBObject (7,
Some (User ("Wandering", "Joe", None))

)

def validAddress(user: Option[User]): Validation[String, Address] = {
user match {

case Some(User(, , Some(address))) if postOfficeValid(address) =>
address.success

case Some(User(_, _, Some(address))) =>
"Invalid address: Not recognized by postal service".failure

case Some(User(, _, None)) =>
"User has no defined address".failure

case None =>
"No such user".failure

Sticking it all together

e scalaz has a number of applicative operators to combine
Validation results

e *>and <* are two of the ones you'll run into first
= *>takes the right hand value and discards the left

m <*takes the left hand value and discards the right

= Errors"win"

l.some *> 2.some
/* resl0: Option[Int] = Some(2) */

l.some <* 2.some
/* resll: Option[Int] = Some(l) */

1.some <* None

/* resl3: Option[Int] = None */
None *> 2.some
/* resld: Option[Int] = None */

BUT: with Validation it will chain together all errors that
occur instead of short circuiting

validDBUser (brendanCA) *> validAddress(brendanCA.user)
/* resl6: scalaz.Validation[String,Address] =
Success (Address (Sunnyvale)) */

validDBUser (cthulhu) *> validAddress(cthulhu.user)
/* resl7: scalaz.Validation[String,Address] =
Failure(Invalid address: Not recognized by postal service) */

validDBUser (wanderingJoe) *> validAddress(wanderingJoe.user)
/* resl9: scalaz.Validation[String,Address] =
Failure(User has no defined address) */

validDBUser (noSuchPerson) *> validAddress(noSuchPerson.user)

/* resl8: scalaz.Validation[String,Address] =
Failure(DBObject DBObject(6,None) does not contain a user objectNo such user)*/

Wait. WTF happened to that last one?

validDBUser (brendanCA) *> validAddress(brendanCA.user)
/* resl6: scalaz.Validation[String,Address] =
Success (Address (Sunnyvale)) */

validDBUser (cthulhu) *> validAddress(cthulhu.user)
/* resl7: scalaz.Validation[String,Address] =
Failure(Invalid address: Not recognized by postal service) */

validDBUser (wanderingJoe) *> validAddress(wanderingJoe.user)
/* resl9: scalaz.Validation[String,Address] =
Failure(User has no defined address) */

validDBUser (noSuchPerson) *> validAddress(noSuchPerson.user)

/* resl8: scalaz.Validation[String,Address] =
Failure(DBObject DBObject(6,None) does not contain a user objectNo such user)*/

e The way *> is called on Validation, it appends all errors
together...

e \We'll need another tool if we want this to make sense

NonEmptyList

NonEmptyList is a
scalaz List that is guaranteed to
have at least one element

Commonly used
with Validation to allow accrual
of multiple error messages

There's a type alias
for Validation[NonEmptyList[L],
R] of ValidationNEL|L, R]

Like a list, append allows
elements to be added to the end

def validDBUserNel (dbObj: DBObject): Validation[NonEmptyList[String], User] = {
dbObj.user match {

case Some(user) =>
Success (user)

case None =>
Failure(NonEmptyList(s"DBObject $dbObj does not contain a user object"))

We can be explicit, and construct a NonEmptyList by hand

def validAddressNel(user: Option[User]): ValidationNel[String, Address] = {
user match {

case Some(User(, , Some(address))) if postOfficeValid(address) =>
address.success

case Some(User(_, _, Some(address))) =>
"Invalid address: Not recognized by postal service".failureNel

case Some(User(_, _, None)) =>
"User has no defined address".failureNel

case None =>
"No such user".failureNel

Or we can use some helpers, calling .failureNel, and declaring
a ValidationNel return type.

validDBUserNel (noSuchPerson) *> validAddressNel (noSuchPerson.user)

/* res20: scalaz.Validation[scalaz.NonEmptyList[String],Address] =
Failure(NonEmptyList (

DBObject (6,None) does not contain a user object,
No such user

))
3/

Now, we get a list of errors - instead of a globbed string

One Last Operator

e scalaz provides another useful
applicative operator for us

¢ |@| combines all of the Failure
and Success conditions

e To handle Successes we provide
a PartialFunction

(validDBUserNel (brendanCA) |@| validAddressNel (brendanCA.user)) {
case (user, address) =>
s"User ${user.first} S${user.last} lives in ${address.city}"

}

// "User Brendan McAdams lives in Sunnyvale"

Our other users will return an NEL of errors, like with *>

(validDBUserNel (noSuchPerson) |@| validAddressNel (noSuchPerson.user)) {

case (user, address) =>
s"User S${user.first} S${user.last} lives in S${address.city}"

}

// Failure(
// NonEmptyList (DBObject DBObject(6,None) does not contain a user object,

// No such user))

noSuchPerson gets a combined list

One last function: Error Handling

Dealing sanely with errors is always a challenge

There are a few ways in the Scala world to avoid try/catch,
such as scala.util.Try

scalaz'\/ offers the Higher Order
Function fromTryCatchThrowable, which catches any
specific exception, and returns a Disjunction

You specify your return type, the type of exception to
catch, and your function body...

Here's a great function to wrap...

\/.fromTryCatchThrowable[Int, NumberFormatException] {
"foo".toInt

}

/* res9: scalaz.\/[NumberFormatException,Int] =
-\/(java.lang.NumberFormatException:
for input string: "foo") */

Note the reversed order of arguments: Right type, then Left
type

\/.fromTryCatchThrowable[Int, Exception] {
"foo".toInt

}

/* res9: scalaz.\/[NumberFormatException,Int] =
-\/(java.lang.NumberFormatException:
for input string: "foo") */

We can also be "less specific”" in our exception type to catch
more

\/.fromTryCatchThrowable[Int, java.sql.SQLException] {
"foo".toInt

}

/*

java
at
at
at

.lang.NumberFormatException: For input string: "foo"
java.lang.NumberFormatException.forInputString(NumberFormatException. :
java.lang.Integer.parselInt(Integer.java:580)
java.lang.Integer.parselInt(Integer.java:615)

Our exception type matters: if an Exception doesn't match it
will still be thrown

\/.fromTryCatchNonFatal[Int] {
"foo".toInt

}
/* resld: scalaz.\/[Throwable,Int] =

-\/(java.lang.NumberFormatException:
For input string: "foo") */

There is also \/.tryCatchNonFatal which will
catch anything classified as scala.util.control.NonFatal

Final Thought: On Naming

From the skeptical side, the common use of symbols gets...
interesting

Agreeing on names - at least within your own team - is
important

Although it is defined in the file "Either.scala’,
calling \/ "Either" gets confusing vs. Scala's builtin Either

Here's a few of the names I've heard used in the
community for |@| (There's also a unicode alias of ®)

Oink

Cinnabon/Cinnamon Bun
| ’ ~

Chelsea Bun / Pain aux Raisins

Princess Leia

Admiral Ackbar

Scream 27

Home Alone

.-

Pinkie Pie

Some Resources..

e Fugene Yokota's free website, "Learning Scalaz"
» http://eed3si?n.com/learning-scalaz/

e | earnsome Haskell! | really like "Learn You A Haskell For
Great Good" by Miran Lipovaca

m http://learnyouahaskell.com

Questions?

