
NoLambda: Combining Streaming,
Ad-Hoc, Machine Learning, and

Batch Analytics

Evan Chan
April 2016

https://twitter.com/Evanfchan

Evan Chan

Distinguished Engineer,
 |

User and contributor to Spark since 0.8, Cassandra since 0.6
Co-creator and maintainer of
Speaker: Strata, Spark Summit, Cassandra Summit

Tuplejump
@evanfchan evan@tuplejump.com
http://velvia.github.io

Spark Job Server

http://www.tuplejump.com/
https://twitter.com/Evanfchan
mailto:evan@tuplejump.com
http://velvia.github.io/
http://github.com/spark-jobserver/spark-jobserver

Tuplejump
 is a big data technology leader providing solutions and

development partnership.
Tuplejump

http://tuplejump.com/

 Open Source: on GitHubTuplejump
 - Distributed Spark + Cassandra analytics database

 - Kafka-Cassandra Source and Sink
 - The �rst Spark Cassandra integration
 - Lucene indexer for Cassandra
 - HDFS for Cassandra

FiloDB
Kafka Connect Cassandra
Calliope
Stargate
SnackFS

http://tuplejump.com/
http://github.com/tuplejump/FiloDB
http://github.com/tuplejump/kafka-connect-cassandra
http://tuplejump.github.io/calliope/
http://tuplejump.github.io/stargate/
https://github.com/tuplejump/snackfs

Rescuing struggling big data projects
with innovative, effective solutions

Experience designing, developing, productionizing big data and
real time projects
Intimate source-code knowledge of leading edge big data
solutions
Team leadership, embedding within a team
Architecture, data modeling
Deep relationships with open source big data communities

Topics
Big data + Fast Data: We need to handle the deluge!
From LAMP to Batch to Lambda Architecture
Simplifying the stack with the NoLambda / SNACK stack
Detailed look at stream processing pipelines
FiloDB and fast analytics with competitive storage cost
Machine learning with Spark, Cassandra, and FiloDB

Big data is yesterday.

FAST DATA
is now.

Fast Data + Big Data
1-30 seconds: Reactive processing of streaming data as it
comes in to derive instant insights.
Minutes to Days/Months: Combine with recent or historical
data for deeper insights, trends, ML.
Not enough just to have stream processing or batch
processing.

The Problem Domain
Build scalable, adaptable, self-healing, distributed data
processing systems for

24 / 7 Uptime
Auto scale out
Complex analytics and learning tasks
Aggregate global data
Ops for global, multi-dc clustered data �ows
Decoupled services
Idempotent & Acceptable Consistency
No data loss

Factors & Constraints in Architecture

What's the simplest architecture I need for now?
Scalability for future workloads
Maintenance and operations - KISS (Keep it Simple)
Cost
Interaction with legacy data or legacy architecture
What SLAs can be met?
How does this architecture �t into my existing team? Who
needs to be hired?

The list goes on...

Need Self-Healing Systems
Massive event spikes & bursty traf�c
Fast producers / slow consumers
Network partitioning & out of sync systems
DC down
Not DDOS'ing ourselves from fast streams
No data loss when auto-scaling down

Monitor Everything
Everything fails, all the time

Use Case
I need fast access to historical data on the �y for predictive

modeling with real time data from the stream

Only, It's Not A Stream It's A Flood

Trillions of event writes per day
Billions of event reads per day
Massive events per second at peak
Petabytes of total streaming data

Not All Streams Are Created The Same

Daily, Hourly, Frequency, Event Spikes at Peak, Overall Volume

Sub-second, low latency stream processing
Higher latency stream processing
Scheduled or on request batch processing

Real Time
Just means Event Driven or processing events as they arrive
Doesn't automatically equal sub-second latency requirements

Event Time
When an event is created, e.g. on sensor
Events should be uniquely timestamped on ingestion for
tracking, metrics and replay

Based on the schema of data in a given stream
Some can aggregate with sliding windows (T1...Tn,Tn+1...) using
window length + slide interval:

stream.reduceByKeyAndWindow((a:Int,b:Int) => (a + b), Seconds(30), Seconds(10))

Some must aggregate by buckets
/Event_Type/YYYY/MM/DD/HH/MM/...

CREATE TABLE timeseries.raw_data_fu (
 sensor_id text, year int, month int, day int, hour int,...
 PRIMARY KEY ((sensor_id), year, month, day, hour)
) WITH CLUSTERING ORDER BY (year DESC, month DESC, day DESC, hour DESC);

Stream Processing
Kafka - Foundation to streaming architecture
Samza - Just streaming
Gearpump - Real-time big data streaming

Analytics Stream Processing
Storm - Real-time Analytics, ML, needs Trident to stream
Flink - Real-time Analytics, ML, Graph
Spark Streaming - Micro-batch Analytics, ML, Graph

So, let's talk

Architecture!

LAMP Architecture

Could this handle streaming data and analytics?
Not scalable, but super simple

Hadoop - Big Data Architecture

Everybody jumped into Hadoop clusters to scale up data
processing
Write data into �les, process in batches
Spark: much faster, but same paradigm (batches)
Pros: easy to understand
Cons: high latency, not real time, very complex to set up

Lambda Architecture
A data-processing architecture designed to handle massive quantities
of data by taking advantage of both batch and stream processing
methods.

Lambda Architecture

()https://www.mapr.com/developercentral/lambda-architecture

https://www.mapr.com/developercentral/lambda-architecture

λ The Good

Immutability - retaining master data
With timestamped events
Appended versus overwritten events

Attempt to beat CAP
Pre-computed views for

further processing
faster ad-hoc querying

λ The Bad

Two Analytics systems to support
Operational complexity
By the time a scheduled job is run 90% of the data is stale
Many moving parts: KV store, real time platform, batch
technologies
Running similar code and reconciling queries in dual systems
Analytics logic changes on dual systems

λ The Overly Complicated

Immutable sequence of records is ingested and fed into

a batch processing system
and a stream processing system
in parallel

Ultimately Very High TCO And...

Are Batch and Streaming Systems
Fundamentally Different?

Why is batch processing not thought of as a stream?
Are we not accumulating events from T-1 to T-n
Or bucketed by Year-Month-Day-Hour?
Can't we process everything as a stream?

A Unified Streaming Architecture
Everything On The Streaming Platform

Scala / Spark Streaming
Mesos
Akka
Cassandra
Kafka

SNACK (SMACK) Stack

High Throughput Distributed Messaging
High Scalability - billions of events per day
Durability - no data loss
Immutability
Support Massive Number of Consumers
Very ef�cient and low latency
Decouples Data Pipelines
Automatic recovery from broker failures

Stream Processing Simplified
Kafka Streams

In master, coming in v0.10
Removes the need to run another framework like Storm
alongside Kafka
Removes the need for separate infrastructures
Common stream operations, e.g. join, �lter, map, etc.
Windowing
Proper time modeling, e.g. event time vs. processing time
Local state management with persistence and replication
Schema and Avro support

Spark Streaming
Iterative ML, Interactive Querying, Graph, DataFrames

One runtime for streaming and batch processing
Join streaming and static data sets
No code duplication
Easy Kafka stream integration
Easy to reconcile queries against multiple sources
Easy integration of KV durable storage

Apache Cassandra

Horizontally scalable
Multi-Region / Multi-Datacenter
Always On - Survive regional outages
Extremely fast writes: - perfect for ingestion of real time /
machine data
Very �exible data modelling (lists, sets, custom data types)
Easy to operate
Best of breed storage technology, huge community
BUT: Simple queries only
OLTP-oriented/center

High performance concurrency framework for Scala and Java
Fault Tolerance
Asynchronous messaging and data processing
Parallelization
Location Transparency
Local / Remote Routing
Akka: Cluster / Persistence / Streams

Kafka Streams
KStreamBuilder builder = new KStreamBuilder();
KStream<K, V> stream = builder.stream(des, des, "raw.data.topic")
 .flatMapValues(value -> Arrays.asList(value.toLowerCase.split(" "))
 .map((k,v) -> new KeyValue(k,v))
 .countByKey(ser, ser, des, des, "kTable")
 .toStream();

stream.to("results.topic", ...);

KafkaStrams streams = new KafkaStreams(builder, props);
streams.start();

https://github.com/con�uentinc/demos

https://github.com/confluentinc/demos

Spark Streaming Kafka
Immutable Raw Data From Kafka Stream

Replaying data streams: for fault tolerance, logic changes..
class KafkaStreamingActor(ssc: StreamingContext) extends MyAggregationActor { 

 val stream = KafkaUtils.createDirectStream(...) .map(RawWeatherData(_))

 stream
 .foreachRDD(_.toDF.write.format("filodb.spark")
 .option("dataset", "rawdata").save())

 /* Pre-Aggregate data in the stream for fast querying and aggregation later. */

 stream.map(hour =>
 (hour.wsid, hour.year, hour.month, hour.day, hour.oneHourPrecip)
).saveToCassandra(timeseriesKeyspace, dailyPrecipTable) 
}

Reading Data From Cassandra On Request, Further
Aggregation

Compute isolation in Akka Actor
class TemperatureActor(sc: SparkContext) extends AggregationActor { 
 import akka.pattern.pipe

 def receive: Actor.Receive = { 
 case e: GetMonthlyHiLowTemperature => highLow(e, sender) 
 }  

 def highLow(e: GetMonthlyHiLowTemperature, requester: ActorRef): Unit = 
 sc.cassandraTable[DailyTemperature](timeseriesKeyspace, dailyTempAggregTable) 
 .where("wsid = ? AND year = ? AND month = ?", e.wsid, e.year, e.month)
 .collectAsync() 
 .map(MonthlyTemperature(_, e.wsid, e.year, e.month)) pipeTo requester
}

Spark Streaming, MLLib
Kafka, Cassandra

val ssc = new StreamingContext(sparkConf, Seconds(5) )
val testData = ssc.cassandraTable[String](keyspace,table)
 .map(LabeledPoint.parse)

val trainingStream = KafkaUtils.createDirectStream[_,_,_,_](..)
 .map(transformFunc)
 .map(LabeledPoint.parse)

trainingStream.saveToCassandra("ml_training_keyspace", "raw_training_data") 

 val model = new StreamingLinearRegressionWithSGD() 
 .setInitialWeights(Vectors.dense(weights)) 
 .trainOn(trainingStream)

model
 .predictOnValues(testData.map(lp => (lp.label, lp.features)))
 .saveToCassandra("ml_predictions_keyspace", "predictions")

What's Missing? One Pipeline For Fast +
Big Data

Using Cassandra for Batch Analytics /
Event Storage / ML?

Storage ef�ciency and scan speeds for reading large volumes
of data (for complex analytics, ML) become important
concerns
Regular Cassandra CQL tables are not very good at either
storage ef�ciency or scan speeds
A different, analytics-optimized solution is needed...

All hard work leads to pro�t, but mere talk leads
to poverty.
- Proverbs 14:23

Introducing FiloDB
A distributed, versioned, columnar analytics database.

Built for Streaming.

github.com/tuplejump/FiloDB

http://github.com/tuplejump/FiloDB

Fast Analytics Storage
Scan speeds competitive with Apache Parquet

Up to 200x faster scan speeds than with Cassandra 2.x
Flexible �ltering along two dimensions

Much more ef�cient and �exible partition key �ltering
Ef�cient columnar storage, up to 40x more ef�cient than
Cassandra 2.x

Comparing Storage Costs and Query Speeds

https://www.oreilly.com/ideas/apache-cassandra-for-analytics-
a-performance-and-storage-analysis

https://www.oreilly.com/ideas/apache-cassandra-for-analytics-a-performance-and-storage-analysis

Robust Distributed Storage
Apache Cassandra as the rock-solid storage engine. Scale out
with no SPOF. Cross-datacenter replication. Proven storage and
database technology.

Cassandra-Like Data Model
Column A Column B

Partition
key 1

Segment
1

Segment
2

Segment
1

Segment
2

Partition
key 2

Segment
1

Segment
2

Segment
1

Segment
2

partition keys - distributes data around a cluster, and allows
for �ne grained and �exible �ltering
segment keys - do range scans within a partition, e.g. by time
slice
primary key based ingestion and updates

Designed for Streaming
New rows appended via Spark Streaming or Kafka
Writes are idempotent - easy exactly once ingestion
Converted to columnar chunks on ingest and stored in C*
FiloDB keeps your data sorted as it is being ingested

Spark SQL Queries!
CREATE TABLE gdelt USING filodb.spark OPTIONS (dataset "gdelt");

SELECT Actor1Name, Actor2Name, AvgTone FROM gdelt ORDER BY AvgTone DESC LIMIT 15

INSERT INTO gdelt SELECT * FROM NewMonthData;

Read to and write from Spark Dataframes
Append/merge to FiloDB table from Spark Streaming
Use Tableau or any other JDBC tool

What's in the name?

Rich sweet layers of distributed, versioned database goodness

NoLambda / SNACK stack for
Real-Time + AdHoc + Deep Analytics

Regular Cassandra tables for highly concurrent, aggregate /
key-value lookups (dashboards)
FiloDB + C* + Spark for ef�cient long term event storage

Ad hoc / SQL / BI
Data source for MLLib / building models
Data storage for classi�ed / predicted / scored data

Being Productionized as we speak...
One enterprise with many TB of �nancial and reporting data is
moving their data warehouse to FiloDB + Cassandra + Spark
Another startup uses FiloDB as event storage, feeds the events
into Spark MLlib, scores incoming data, then stores the results
back in FiloDB for low-latency use cases

From their CTO: “I see close to MemSQL / Vertica or even
better” “More cost effective than Redshift”

FiloDB Use Cases
Data Warehousing / BI

< 10 second SLA, nontrivial reports, some concurrency
need to store and query lots of data ef�ciently

Time series
idempotent write API, simultaneous write and read
workloads

In-memory SQL web server
700 queries per second using in-memory column store

http://velvia.github.io/Spark-Concurrent-Fast-Queries/

Real-world DW Architecture Stack

Ef�cient columnar storage + �ltering = low latency BI

FiloDB vs HDFS/Parquet
FiloDB Parquet

Ingestion Idempotent primary-key
based; appends and
replaces; deletes coming

File-based
append
API only

Filtering Partition-key and segment-
key �ltering

Mostly
�le-based

Scan
speeds

Parquet-like Good for
OLAP

Storage
cost

Within 35% of Parquet

FiloDB vs HDFS/Parquet
In practice, with good data modeling, FiloDB is a far better �t for
low-latency / concurrent BI / reporting / dashboard applications.

FiloDB vs Druid
Different use cases:

Druid is optimized mostly for OLAP cube / slice and dice
analysis. Append only, keeps only aggregates, not a raw event
store.
FiloDB stores raw data - can be used to build ML models,
visualize and analyze raw time series data, do complex event
�ow analysis - much more �exible
FiloDB can update/replace data
FiloDB does not require data denormalization - can handle
traditional BI star schemas with slowly changing dimension
tables

Modeling example: NYC Taxi Dataset
The public contains telemetry (pickup, dropoff
locations, times) info on millions of taxi rides in NYC.

NYC Taxi Dataset

Medallion pre�x 1/1 - 1/6 1/7 - 1/12
AA records records

AB records records
Partition key - :stringPrefix medallion 2 - hash
multiple drivers trips into ~300 partitions
Segment key - :timeslice pickup_datetime 6d
Row key - hack_license, pickup_datetime

Allows for easy �ltering by individual drivers, and slicing by time.

http://www.andresmh.com/nyctaxitrips/

New York City Taxi Data Demo (Spark
Notebook)

To follow along:
https://github.com/tuplejump/FiloDB/blob/master/doc/FiloDB_Taxi_Geo_demo.snb

https://github.com/tuplejump/FiloDB/blob/master/doc/FiloDB_Taxi_Geo_demo.snb

Machine Learning with Spark, Cassandra,
and FiloDB

Building a static model of NYC Taxi Trips
Predict time to get to destination based on pickup point, time
of day, other vars
Need to read all data (full table scan)

Dynamic models are better than static
models

Everything changes!
Continuously re�ne model based on recent streaming data +
historical data + existing model

val ssc = new StreamingContext(sparkConf, Seconds(5) )
val dataStream = KafkaUtils.createDirectStream..
 .map(transformFunc)
 .map(LabeledPoint.parse)

dataStream.foreachRDD(_.toDF.write.format("filodb.spark")
 .option("dataset", "training").save())

if (trainNow) {
 var model = new StreamingLinearRegressionWithSGD() 
 .setInitialWeights(Vectors.dense(weights)) 
 .trainOn(dataStream.join(historicalEvents))
}

model.predictOnValues(dataStream.map(lp => (lp.label, lp.features)))
 .insertIntoFilo("predictions")

The FiloDB Advantage for ML
Able to update dynamic models based on massive data
�ow/updates

Integrate historical and recent events to build models
More data -> better models!
Can store scored raw data / predictions back in FiloDB

for fast user queries

FiloDB - Roadmap
Your input is appreciated!

Productionization and automated stress testing
Kafka input API / connector (without needing Spark)
In-memory caching for signi�cant query speedup
True columnar querying and execution, using late
materialization and vectorization techniques. GPU/SIMD.
Projections. Often-repeated queries can be sped up
signi�cantly with projections.

Thanks For Attending!
evan@tuplejump.com
@evanfchan

https://twitter.com/Evanfchan

EXTRA SLIDES

Data Warehousing with FiloDB

Scenarios
BI Reporting, concurrency + seconds latency
Ad-hoc queries
Needing to do JOINs with fact tables + dimension tables

Slowly changing dim tables / hard to denormalize
Need to work with legacy BI tools

Modeling Fact Tables for FiloDB
Single partition queries are really fast and take up only one
thread

Given the following two partition key columns:
entity_number, year_month
WHERE entity_number = '0453' AND
year_month = '2014 December'

Exact match for partition key is pushed down as one
partition

Consider the partition key carefully

Cassandra often requires multiple tables
What about the queries that do not translate to one partition?
Cassandra has many restrictions on partition key �ltering (as of
2.x).

Table 1: partition key = (entity_number, year_month)
Can push down: WHERE entity_number = NN AND
year_month IN ('2014 Jan', '2014 Feb') as
well as equals

Table 2: partition key = (year_month, entity_number)
Can push down: WHERE year_month = YYMM AND
entity_number IN (123, 456) as well as equals

IN clause must be the last column to be pushed down. Two tables
are needed just for ef�cient IN queries on either entity_number
or year_month.

Flexible Filtering
Unlike Cassandra, FiloDB offers very �exible and ef�cient
�ltering on partition keys. Partial key matches, fast IN queries on
any part of the partition key.

No need to write multiple tables to work around answering different
queries.

FiloDB Flexible Partition Filters = WIN
With ONE table, FiloDB offers FAST, arbitrary partition key
�ltering. All of the below are pushed down:

WHERE year_month IN ('2014 Jan', '2014 Feb')
(all entities)
WHERE entity_number = 146 (all year months)
Any combo of =, IN

Space savings: 27 * 2 = 54x

Multi-Table JOINs with just Cassandra

Sub-second Multi-Table JOINs with FiloDB

Sub-second Multi-Table JOINs with FiloDB
Four tables, all of them single-partition queries
Two tables were switched from regular Cassandra tables to
FiloDB tables. 40-60 columns each, ~60k items in partition.
Scan times went down from 5-6 seconds to < 250ms

For more details, please see this .Planet Cassandra blog post

http://www.planetcassandra.org/blog/achieving-sub-second-sql-joins-and-building-a-data-warehouse-using-spark-cassandra-and-filodb/

Scalable Time-Series / Event Storage with
FiloDB

Spark Streaming -> FiloDB
 val ratingsStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topics)
 ratingsStream.foreachRDD {
 (message: RDD[(String, String)], batchTime: Time) => {
 val df = message.map(_._2.split(",")).map(rating => Rating(rating(0).trim.toInt, rating(
 toDF("fromuserid", "touserid", "rating")

 // add the batch time to the DataFrame
 val dfWithBatchTime = df.withColumn("batch_time", org.apache.spark.sql.functions.lit(batchTime.milliseconds))

 // save the DataFrame to FiloDB
 dfWithBatchTime.write.format("filodb.spark")
 .option("dataset", "ratings")
 .save()
 }
 }

One-line change to write to FiloDB vs Cassandra

Fast, Updatable In-Memory
Columnar Storage

Unlike RDDs and DataFrames, FiloDB can ingest new data, and
still be fast
Unlike RDDs, FiloDB can �lter in multiple ways, no need for
entire table scan
FAIR scheduler + sub-second latencies => web speed queries

700 Queries Per Second in Apache Spark!
Even for datasets with 15 million rows!
Using FiloDB's InMemoryColumnStore, single host / MBP,
5GB RAM
SQL to DataFrame caching

For more details, see .this blog post

http://velvia.github.io/Spark-Concurrent-Fast-Queries/

FiloDB - How?

Multiple ways to Accelerate Queries
Columnar projection - read fewer columns, saves I/O
Partition key �ltering - read less data
Sort key / PK �ltering - read from subset of keys

Possible because FiloDB keeps data sorted
Versioning - write to multiple versions, read from the one you
choose

Cassandra CQL vs Columnar Layout
Cassandra stores CQL tables row-major, each row spans multiple
cells:

PartitionKey 01:�rst 01:last 01:age 02:�rst 02:last 02:age
Sales Bob Jones 34 Susan O'Connor 40

Engineering Dilbert P ? Dogbert Dog 1

Columnar layouts are column-major:

PartitionKey �rst last age
Sales Bob, Susan Jones,

O'Connor
34,
40

Engineering Dilbert,
Dogbert

P, Dog ?, 1

FiloDB Cassandra Schema
CREATE TABLE filodb.gdelt_chunks (
 partition text,
 version int,
 columnname text,
 segmentid blob,
 chunkid int,
 data blob,
 PRIMARY KEY ((partition, version), columnname, segmentid, chunkid)
) WITH CLUSTERING ORDER BY (columnname ASC, segmentid ASC, chunkid ASC)

FiloDB Architecture

ColumnStore API - currently Cassandra and InMemory, you can
implement other backends - ElasticSearch? etc.

