
A Practical Tour of Scala’s Type System
Academese to English:

Heather Miller
@heathercmiller

PhillyETE, April 11th, 2016

Motivation for this talk:

You can do a ton of stuff with it.

Let’s only look at stuff that 80% of people can
rapidly apply.

Scala’s got a very rich type system

Yet, the basics could really be better explained.

rule:

Who is this talk for?
Everyone.
…except Scala type system experts.

To show you some of the basics of Scala’s type
system. Just the handful of concepts you should
know to be proficient.

My goal:

Nothing fancy.

Topics we’ll cover:

e.g., Type-level programming, Higher Kinded
Types, Path-Dependent Types, …, Dotty.

Scala’s basic pre-defined types
Defining your own types
Parameterized types
Bounds
Variance
Abstract types
Existential types
Type classes

There’s a list of other stuff this talk won’t cover.

A Whirlwind tour of Scala’s
type system

Let’s go on….

Basic predefined types
Scala’s

java.lang
String

scala
Boolean scala

Iterable

scala
Any

scala
AnyVal

scala
Unit

scala
Double

scala
Float

scala
Char

scala
Long

scala
Int

scala
Short

scala
Byte

scala
Nothing

scala
Seq

scala
List

scala
Null

scala
AnyRef

java.lang.Object

... (other Scala classes) ...

... (other Java classes) ...

Implicit Conversion
Subtype

Basic predefined types
Scala’s

java.lang
String

scala
Boolean scala

Iterable

scala
Any

scala
AnyVal

scala
Unit

scala
Double

scala
Float

scala
Char

scala
Long

scala
Int

scala
Short

scala
Byte

scala
Nothing

scala
Seq

scala
List

scala
Null

scala
AnyRef

java.lang.Object

... (other Scala classes) ...

... (other Java classes) ...

Implicit Conversion
Subtype

Basic predefined types
Scala’s

java.lang
String

scala
Boolean scala

Iterable

scala
Any

scala
AnyVal

scala
Unit

scala
Double

scala
Float

scala
Char

scala
Long

scala
Int

scala
Short

scala
Byte

scala
Nothing

scala
Seq

scala
List

scala
Null

scala
AnyRef

java.lang.Object

... (other Scala classes) ...

... (other Java classes) ...

Implicit Conversion
Subtype

Define our own types?
How do we

Two ways:

Define a class or a trait

Declarations of named types
e.g., traits or classes

Define a type member using the
type keyword

1.)

class	Animal(age:	Int)	{	
		//	fields	and	methods	here...	
}

trait	Collection	{	
		type	T	
}

Define our own types?
How do we

Two ways:

Define a class or a trait

Declarations of named types
e.g., traits or classes

Define a type member using the
type keyword

1.)

Combine. Express types (not named) by
combining existing types.

2.)

e.g., compound type, refined type

def	cloneAndReset(obj:	Cloneable	with	Resetable):	Cloneable	=	{	
		//...	
}

Parameterized Types
Interacting with typechecking via

Same as generic types in Java. A generic type is a
generic class or interface that is parameterized
over types.

What are they?

class	Stack[T]	{	
		var	elems:	List[T]	=	Nil	
		def	push(x:	T)	{	elems	=	x	::	elems	}	
		def	top:	T	=	elems.head	
		def	pop()	{	elems	=	elems.tail	}	
}

for example:

Parameterized Types
Interacting with typechecking via

Same as generic types in Java. A generic type is a
generic class or interface that is parameterized
over types.

What are they?

class	Stack[T]	{	
		var	elems:	List[T]	=	Nil	
		def	push(x:	T)	{	elems	=	x	::	elems	}	
		def	top:	T	=	elems.head	
		def	pop()	{	elems	=	elems.tail	}	
}

for example:

Can interact with type-
checking by adding or
relaxing constraints on
the type parameters

using
variance

bounds

Bounds?
Both type parameters and type members
can have type bounds:

lower bounds (subtype bounds)
upper bounds (supertype restrictions)

Parameterized types; you can constrain them.

Remember the type hierarchy?
All types have an upper bound of Any
and a lower bound of Nothing

trait	Box[T	<:	Tool]

for example:
trait	Generic[T	>:	Null]	{	
		//	`null`	allowed	due	to	lower		
		//		bound	
		private	var	fld:	T	=	null	
}

for example:
trait	Generic[T	>:	Null]	{	
		//	`null`	allowed	due	to	lower		
		//		bound	
		private	var	fld:	T	=	null	
}

Bounds?
Both type parameters and type members
can have type bounds:

lower bounds (subtype bounds)
upper bounds (supertype restrictions)

Parameterized types; you can constrain them.

Remember the type hierarchy?
All types have an upper bound of Any
and a lower bound of Nothing

trait	Box[T	<:	Tool]
A Box can contain any
element T which is a
subtype of Tool.

Bounds?
Both type parameters and type members
can have type bounds:

lower bounds (subtype bounds)
upper bounds (supertype restrictions)

Parameterized types; you can constrain them.

Remember the type hierarchy?
All types have an upper bound of Any
and a lower bound of Nothing

trait	Box[T	<:	Tool]

for example:
trait	Generic[T	>:	Null]	{	
		//	`null`	allowed	due	to	lower		
		//		bound	
		private	var	fld:	T	=	null	
}

Null can be used as a bottom type
for any value that is nullable.

Bounds?
Both type parameters and type members
can have type bounds:

lower bounds (subtype bounds)
upper bounds (supertype restrictions)

Parameterized types; you can constrain them.

Remember the type hierarchy?
All types have an upper bound of Any
and a lower bound of Nothing

trait	Box[T	<:	Tool]

for example:
trait	Generic[T	>:	Null]	{	
		//	`null`	allowed	due	to	lower		
		//		bound	
		private	var	fld:	T	=	null	
}

Null can be used as a bottom type
for any value that is nullable.

Recall class Null from
the type hierarchy. It is
the type of the null
reference; it is a
subclass of every
reference class (i.e.,
every class that itself
inherits from AnyRef).
Null is not
compatible with
value types.

		scala>	val	i:	Int	=	null	
		<console>:4:	error:	type	mismatch;	
			found			:	Null(null)	
			required:	Int

Variance?

How might they relate to one another?

trait	Box[T]	
class	Tool	
class	Hammer	extends	Tool

Tool

Hammer

Box[Tool]

Box[Hammer]

Tool

Hammer

Box[Tool]

Box[Hammer]

Tool

Hammer

Box[Tool]

Box[Hammer]

Three possibilities:

Given the following:

Covariant Contravariant Invariant

Parameterized types; you can constrain them.

Covariance

trait	Animal	
class	Mammal	extends	Animal	
class	Zebra	extends	Mammal

Let’s look at a simple zoo-inspired example. Given:

We’d like to define a field for our animals to live on:
abstract	class	Field[A]	{	
		def	get:	A	
}

Now, let’s define a function isLargeEnough that
takes a Field[Mammal] and tests if the field is large
enough for the mammal to live in

def	isLargeEnough(run:	Field[Mammal]):	Boolean	=	…

Can we pass zebras to this function? A Zebra is a
Mammal, right?

http://julien.richard-foy.fr/blog/2013/02/21/be-friend-with-covariance-and-contravariance/

Covariance

Nope. Field[Zebra] is not a subtype of Field[Mammal].
Why? Field, as defined is invariant. There is no
relationship between Field[Zebra] and Field[Mammal].

scala>	isLargeEnough(zebraRun)	
<console>:14:	error:	type	mismatch;	
	found			:	Run[Zebra]	
	required:	Run[Mammal]

So let’s make it covariant!

http://julien.richard-foy.fr/blog/2013/02/21/be-friend-with-covariance-and-contravariance/

abstract	class	Field[+A]	{	
		def	run:	A	
}

Et voilà, it compiles.

Contravariance
Keeping with our zoo-inspired example, let’s say
our zoo has several vets. Some specialized for
specific species.

We need just one vet to treat all the mammals of our zoo:

http://julien.richard-foy.fr/blog/2013/02/21/be-friend-with-covariance-and-contravariance/

abstract	class	Vet[A]	{	
		def	treat(a:	A)	
}

def	treatMammals(vet:	Vet[Mammal])	{	…	}

Can we pass a vet of animals to treatMammals?

A Mammal is an Animal, so if you have a vet that can treat
animals, it will be OK to pass a mammal, right?

Contravariance

Nope. This doesn’t work because Vet[Animal] is not a
subtype of Vet[Mammal], despite Mammal being a
subtype of Animal.

scala>	treatMammals(animalVet)	
<console>:14:	error:	type	mismatch;	
	found			:	Vet[Animal]	
	required:	Vet[Mammal]

We want Vet[A] to be a subtype of Vet[B] if B is a
subtype of A.

abstract	class	Vet[-A]	{	
		def	treat(a:	A)	
}

So let’s make it contravariant!

http://julien.richard-foy.fr/blog/2013/02/21/be-friend-with-covariance-and-contravariance/

Et voilà, it compiles.

Wait, what’s the difference
between A<:B and +B?

http://stackoverflow.com/questions/4531455/whats-the-difference-between-ab-and-b-in-scala

They seem kind of similar, right?

Coll[A<:B] means that class Coll can

take any class A that is a subclass of B.

Coll[+B] means that Coll can take any

class, but if A is a subclass of B, then Coll[A]
is considered to be a subclass of Coll[B].

They’re different!

http://stackoverflow.com/questions/4531455/whats-the-difference-between-ab-and-b-in-scala

Wait, what’s the difference
between A<:B and +B?

http://stackoverflow.com/questions/4531455/whats-the-difference-between-ab-and-b-in-scala

They seem kind of similar, right?

Coll[A<:B] means that class Coll can

take any class A that is a subclass of B.

Coll[+B] means that Coll can take any

class, but if A is a subclass of B, then Coll[A]
is considered to be a subclass of Coll[B].

They’re different!

Useful when you
want to be generic
but require a certain
set of methods in B

Useful when
you want to
make
collections
that behave
the same way
as the original
classes

http://stackoverflow.com/questions/4531455/whats-the-difference-between-ab-and-b-in-scala

Wait, what’s the difference
between A<:B and +B?

http://stackoverflow.com/questions/4531455/whats-the-difference-between-ab-and-b-in-scala

They seem kind of similar, right?

Coll[A<:B] means that class Coll can

take any class A that is a subclass of B.

Coll[+B] means that Coll can take any class,

but if A is a subclass of B, then Coll[A] is

considered to be a subclass of Coll[B].

They’re different!
Said another way… Given:
class	Animal	
class	Dog	extends	Animal	

class	Car		
class	SportsCar	extends	Car

variance:
case	class	List[+B](elements:	B*)	{}	//	simplification	

	val	animals:	List[Animal]	=	List(new	Dog(),	new	Animal())	
	val	cars:	List[Car]	=	List	(new	Car(),	new	SportsCar())

As you can see List does not care whether it contains
Animals or Cars. The developers of List did not enforce
that e.g. only Cars can go inside Lists.

http://stackoverflow.com/questions/4531455/whats-the-difference-between-ab-and-b-in-scala

Wait, what’s the difference
between A<:B and +B?

http://stackoverflow.com/questions/4531455/whats-the-difference-between-ab-and-b-in-scala

They seem kind of similar, right?

Coll[A<:B] means that class Coll can

take any class A that is a subclass of B.

Coll[+B] means that Coll can take any class,

but if A is a subclass of B, then Coll[A] is

considered to be a subclass of Coll[B].

They’re different!
Said another way… Given:
class	Animal	
class	Dog	extends	Animal	

class	Car		
class	SportsCar	extends	Car

Bounds:

As you can see Barn is a collection only intended for
Animals. No cars allowed in here.

case	class	Barn[A	<:	Animal](animals:	A*)	{}	

val	animalBarn:	Barn[Animal]	=	Barn(new	Dog(),	new	Animal())	
val	carBarn	=	Barn(new	SportsCar())	
//	error:	inferred	type	arguments	[SportsCar]	do	not	conform	to	method		
//	apply's	type	parameter	bounds	[A	<:	Animal]	
//					val	carBarn	=	Barn(new	SportsCar())	
																				^	

http://stackoverflow.com/questions/4531455/whats-the-difference-between-ab-and-b-in-scala

If you’re a Java developer,

A lot of these things exist for Java.

this may not be surprising.

So how is this richer?
Let’s look at some other aspects of
Scala’s type system!

Abstract type members

A type member (member of an object or class) that
is left abstract.

Basic idea:

Why is this desirable?
Turns out that this is a powerful method of abstraction.

Using abstract type members, we can do a lot of what
parameterization does, but is often more flexible/
elegant!

fundamental idea:
Define a type and leave it “abstract” until you know
what type it will be when you need to make it
concrete in a subclass.

Abstract type members
fundamental idea:

Define a type and leave it “abstract” until you know
what type it will be when you need to make it
concrete in a subclass.

Example:
trait	Pet	
class	Cat	extends	Pet

Given:

Let’s create a person, Susan, who has a Cat both using
abstract type members and parameterization.

Abstract type members
fundamental idea:

Define a type and leave it “abstract” until you know
what type it will be when you need to make it
concrete in a subclass.

Example:

class	Person[Pet]	
class	Susan		
		extends	Person[Cat]

trait	Pet	
class	Cat	extends	Pet

class	Person	{	
		type	Pet	
}	
class	Susan	extends	Person	{	
		type	Pet	=	Cat	
}

Given:

Abstract type members Parameterization

Abstract type members

http://www.artima.com/weblogs/viewpost.jsp?thread=270195

trait	FixtureSuite[F]	{	
		//	...	
}	
trait	StringBuilderFixture	{	this:	FixtureSuite[StringBuilder]	=>	
		//	...	
}	
class	MySuite	extends	FixtureSuite[StringBuilder]	with	StringBuilderFixture	{	
		//	...	
}

trait	FixtureSuite	{	
		type	F	
		//	...	
}	
trait	StringBuilderFixture	{	this:	FixtureSuite	=>	
		type	F	=	StringBuilder	
		//	...	
}	
class	MySuite	extends	FixtureSuite	with	StringBuilderFixture	{	
		//	...	
}

A bigger example from ScalaTest:

Abstract type members

Parameterization

http://www.artima.com/weblogs/viewpost.jsp?thread=270195

Abstract type members

http://www.artima.com/weblogs/viewpost.jsp?thread=270195

trait	FixtureSuite[F]	{	
		//	...	
}	
trait	StringBuilderFixture	{	this:	FixtureSuite[StringBuilder]	=>	
		//	...	
}	
class	MySuite	extends	FixtureSuite[StringBuilder]	with	StringBuilderFixture	{	
		//	...	
}

trait	FixtureSuite	{	
		type	F	
		//	...	
}	
trait	StringBuilderFixture	{	this:	FixtureSuite	=>	
		type	F	=	StringBuilder	
		//	...	
}	
class	MySuite	extends	FixtureSuite	with	StringBuilderFixture	{	
		//	...	
}

A bigger example from ScalaTest:

Abstract type members

Parameterization

The take away:

http://www.artima.com/weblogs/viewpost.jsp?thread=270195

Abstract type members

http://www.artima.com/weblogs/viewpost.jsp?thread=270195

trait	FixtureSuite[F]	{	
		//	...	
}	
trait	StringBuilderFixture	{	this:	FixtureSuite[StringBuilder]	=>	
		//	...	
}	
class	MySuite	extends	FixtureSuite[StringBuilder]	with	StringBuilderFixture	{	
		//	...	
}

trait	FixtureSuite	{	
		type	F	
		//	...	
}	
trait	StringBuilderFixture	{	this:	FixtureSuite	=>	
		type	F	=	StringBuilder	
		//	...	
}	
class	MySuite	extends	FixtureSuite	with	StringBuilderFixture	{	
		//	...	
}

A bigger example from ScalaTest:

Abstract type members

Parameterization

Abstraction without the verbosity of type parameters. (Can be DRYer).

The take away:

http://www.artima.com/weblogs/viewpost.jsp?thread=270195

Existential types

Intuitively, an existential type is a type with some
unknown parts in it.

Basic idea:

Wombit[T]	forSome	{	type	T	}

For example, in the above, T is a type we don’t
know concretely, but that we know exists.

An existential type includes references to  
abstract type/value members that we know exist, but
whose concrete types/values we don’t know.

Importantly,

Existential types

Intuitively, an existential type is a type with some
unknown parts in it.

Basic idea:

Wombit[T]	forSome	{	type	T	}

For example, in the above, T is a type we don’t
know concretely, but that we know exists.

An existential type includes references to  
abstract type/value members that we know exist, but
whose concrete types/values we don’t know.

Importantly,

fundamental idea:

Can leave some parts of your program unknown, and
still typecheck it with different implementations
for those unknown parts.

Existential types

Example:

fundamental idea:

Can leave some parts of your program unknown, and
still typecheck it with different implementations
for those unknown parts.

case	class	Fruit[T](val	weight:	Int,	val	tooRipe:	T	=>	Boolean)	
		
class	Farm	{	
		val	fruit	=	new	ArrayBuffer[Fruit[T]	forSome	{	type	T	}]	
}

Note that existentials are safe, whereas Java’s raw types are not.

Existential types
Let’s look at another example.

http://www.drmaciver.com/2008/03/existential-types-in-scala/

scala>	def	foo(x:	Array[Any])	=	println(x.length)	
foo:	(Array[Any])Unit	

scala>	foo(Array("foo",	"bar",	"baz"))	

http://www.drmaciver.com/2008/03/existential-types-in-scala/

Existential types
Let’s look at another example.

http://www.drmaciver.com/2008/03/existential-types-in-scala/

scala>	def	foo(x:	Array[Any])	=	println(x.length)	
foo:	(Array[Any])Unit	

scala>	foo(Array("foo",	"bar",	"baz"))	

This doesn’t compile, because an Array[String] is not
an Array[Any].

However, it’s completely typesafe–we’ve only used
methods that would work for any Array.

How do we fix this?

:6:	error:	type	mismatch;	
	found			:	Array[String]	
	required:	Array[Any]	
							foo(Array[String]("foo",	"bar",	"baz"))

http://www.drmaciver.com/2008/03/existential-types-in-scala/

Existential types
Attempt #2: Type parameters

http://www.drmaciver.com/2008/03/existential-types-in-scala/

scala>	def	foo[T](x:	Array[T])	=	println(x.length)	
foo:	[T](Array[T])Unit	

scala>	foo(Array("foo",	"bar",	"baz"))	
3

Now foo is parameterized to accept any T. But now
we have to carry around this type parameter, and
we know we only care about methods on Array and
not what the Array contains. So it’s really not
necessary.

We can use existentials to get around this.

http://www.drmaciver.com/2008/03/existential-types-in-scala/

Existential types
Attempt #3: Existentials

http://www.drmaciver.com/2008/03/existential-types-in-scala/

scala>	def	foo(x:	Array[T]	forSome	{	type	T})	=	println(x.length)	
foo:	(Array[T]	forSome	{	type	T	})Unit	

scala>	foo(Array("foo",	"bar",	"baz"))	
3

Woohoo!
Note that a commonly-used shorthand is: Array[_]

Existential types provide a way of abstracting type information,
such that (a) a provider can hide a concrete type ("pack"), and thus
avoid any possibility of the client depending on it, and (b) a client
can manipulate said type by only by giving it a name ("unpack") and
making use of its bounds.

Existentials play a big role in our understanding of abstract data
types and encapsulation. - Burak Emir

http://www.drmaciver.com/2008/03/existential-types-in-scala/

Existential types
Attempt #3: Existentials

http://www.drmaciver.com/2008/03/existential-types-in-scala/

scala>	def	foo(x:	Array[T]	forSome	{	type	T})	=	println(x.length)	
foo:	(Array[T]	forSome	{	type	T	})Unit	

scala>	foo(Array("foo",	"bar",	"baz"))	
3

Woohoo!
Note that a commonly-used shorthand is: Array[_]

Existential types provide a way of abstracting type information,
such that (a) a provider can hide a concrete type ("pack"), and thus
avoid any possibility of the client depending on it, and (b) a client
can manipulate said type by only by giving it a name ("unpack") and
making use of its bounds.

Existentials play a big role in our understanding of abstract data
types and encapsulation. - Burak Emir

The take away:

http://www.drmaciver.com/2008/03/existential-types-in-scala/

Existential types
Attempt #3: Existentials

http://www.drmaciver.com/2008/03/existential-types-in-scala/

scala>	def	foo(x:	Array[T]	forSome	{	type	T})	=	println(x.length)	
foo:	(Array[T]	forSome	{	type	T	})Unit	

scala>	foo(Array("foo",	"bar",	"baz"))	
3

Woohoo!
Note that a commonly-used shorthand is: Array[_]

Existential types provide a way of abstracting type information,
such that (a) a provider can hide a concrete type ("pack"), and thus
avoid any possibility of the client depending on it, and (b) a client
can manipulate said type by only by giving it a name ("unpack") and
making use of its bounds.

Existentials play a big role in our understanding of abstract data
types and encapsulation. - Burak Emir

Code reuse: fully decouple implementation details from types

The take away:

http://www.drmaciver.com/2008/03/existential-types-in-scala/

Type classes
Patterns:

(ad-hoc polymorphism)

Type classes enable retroactive extension.
the ability to extend existing software modules with new
functionality without needing to touch or re-compile the
original source.

Type classes?

Interface:

Implementation:

trait	Pickler[T]	{	
		def	pickle(obj:	T):	Array[Byte]	
}

implicit	object	intPickler	extends	Pickler[Int]	{	
		def	pickle(obj:	Int):	Array[Byte]	=	{	
				//	logic	for	converting	Int	to	Array[Byte]	
		}	
}	

the “type class instance”

the “type class”

Implementation:
implicit	object	intPickler	extends	Pickler[Int]	{	
		def	pickle(obj:	Int):	Array[Byte]	=	{	
				//	logic	for	converting	Int	to	Array[Byte]	
		}	
}	

Type classes?

Interface:
trait	Pickler[T]	{	
		def	pickle(obj:	T):	Array[Byte]	
}

Implementation:
implicit	object	intPickler	extends	Pickler[Int]	{	
		def	pickle(obj:	Int):	Array[Byte]	=	{	
				//	logic	for	converting	Int	to	Array[Byte]	
		}	
}	

Type classes?

Interface:
trait	Pickler[T]	{	
		def	pickle(obj:	T):	Array[Byte]	
}

The first part is an interface containing one or
more operations that should be provided by
several different types.

1.

Implementation:
implicit	object	intPickler	extends	Pickler[Int]	{	
		def	pickle(obj:	Int):	Array[Byte]	=	{	
				//	logic	for	converting	Int	to	Array[Byte]	
		}	
}	

Type classes?

Interface:
trait	Pickler[T]	{	
		def	pickle(obj:	T):	Array[Byte]	
}

The first part is an interface containing one or
more operations that should be provided by
several different types.

1.

Here, a pickle method should be provided for
an arbitrary type, T.

Interface:
trait	Pickler[T]	{	
		def	pickle(obj:	T):	Array[Byte]	
}

Implement that interface for different types.2.

Implementation:
object	intPickler	extends	Pickler[Int]	{	
		def	pickle(obj:	Int):	Array[Byte]	=	{	
				//	logic	for	converting	Int	to	Array[Byte]	
		}	
}	

Type classes?

Crucial: the correct implementation must be
selected automatically based on type!

Interface:
trait	Pickler[T]	{	
		def	pickle(obj:	T):	Array[Byte]	
}

Implement that interface for different types.2.

Implementation:
implicit	object	intPickler	extends	Pickler[Int]	{	
		def	pickle(obj:	Int):	Array[Byte]	=	{	
				//	logic	for	converting	Int	to	Array[Byte]	
		}	
}	

Type classes?

Crucial: the correct implementation must be
selected automatically based on type!

Type classes?

Interface:

Implementation:

trait	Pickler[T]	{	
		def	pickle(obj:	T):	Array[Byte]	
}

implicit	object	intPickler	extends	Pickler[Int]	{	
		def	pickle(obj:	Int):	Array[Byte]	=	{	
				//	logic	for	converting	Int	to	Array[Byte]	
		}	
}	

Using type classes?

Example user code:
def	persist[T](obj:	T)(implicit	p:	Pickler[T]):	Unit	=	{	
		val	arr	=	obj.pickle	
		//	persist	byte	array	`arr`	
}	

Type classes automate the selection of the
implementation.

Automatic selection is enabled by marking
the pickler parameter as implicit!

Using type classes?

Example user code:
def	persist[T:	Pickler](obj:	T):	Unit	=	{	
		val	arr	=	obj.pickle		
		//	persist	byte	array	`arr`	
}	

Type classes automate the selection of the
implementation.

Shorthand with context
bound!

Using type classes?

Example user code:
def	persist[T](obj:	T)(implicit	p:	Pickler[T]):	Unit	=	{	
		val	arr	=	p.pickle(obj)	
		//	persist	byte	array	`arr`	
}	

Type classes automate the selection of the
implementation.

Now possible to invoke persist without passing a
pickler implementation explicitly:

persist(15)

The type checker automatically infers the missing
argument to be intPickler, purely based on its type.

Example user code:
def	persist[T](obj:	T)(implicit	p:	Pickler[T]):	Unit	=	{	
		val	arr	=	p.pickle(obj)	
		//	persist	byte	array	`arr`	
}	

Type classes automate the selection of the
implementation.

Now possible to invoke persist without passing a
pickler implementation explicitly:

persist(15)

The type checker automatically infers the missing
argument to be intPickler, purely based on its type.

The take away:

Type classes
Patterns:

Example user code:
def	persist[T](obj:	T)(implicit	p:	Pickler[T]):	Unit	=	{	
		val	arr	=	p.pickle(obj)	
		//	persist	byte	array	`arr`	
}	

Type classes automate the selection of the
implementation.

Now possible to invoke persist without passing a
pickler implementation explicitly:

persist(15)

The type checker automatically infers the missing
argument to be intPickler, purely based on its type.

Retroactively add functionality without having to recompile.

The take away:

Type classes
Patterns:

But there’s more.
That’s about all I’ll cover.

In addition there’s a bunch more one can do:

Type-level programming.
Type-based materialization with macros.
Tricks with path-dependent types.

You can always do lots of powerful stuff with type
parameters/type members, bounds, variance, and type
classes - all introduced here!

That stuff is advanced. It’s not required knowledge to be
a good Scala programmer.

Higher-kinded types. If you’re interested,
go forth, have fun!

Resources for more advanced stuff
That’s about all I’ll cover.

Konrad Malawski has a wiki of type system
constructs and patterns

The Typelevel folks have an amazing blog!

http://ktoso.github.io/scala-types-of-types/

http://typelevel.org/blog/

Thank you!

