- "JONATHAN'LIPPS DIREC'FOR QF ENGINEERING

k. W@Tl-l"ﬁ‘ps | @sauce.{abs | @IﬁrpplumtD*evs }.?
- e e A
m-&.-&“‘ el =

@ SAUCELABS

@ appium

o 4N

from random Amport randint
from test_model import woven_app model

opts = g ais()

def automate _woves app():
app = woven_app_model (opts| "AFP_PAT
opts| "APP

A B

opts| "SAUCE"))

try:
app.sign_in_button().click()

app.login(opts["EMAIL"), opts| 'PASSWORD'))

app.album(“jlipps’'s |
for x ia rarge(0, randint(2, 4))

app.scroll_down_photos()

! appium/appium =~

<> Code

() Issues 739

B Automation for iOS and Android Apps. http://appium.io/ — Edit

Branch: master ~

P 5,911 commits

New pull request

® Unwatch ~
Il Pull requests 3 ||| Boards & Burndown 4~ Pulse I1 Graphs
V' 40 branches © 107 releases

New file Upload files Findfile SSH~

& imurchie Merge pull request #6375 from appium/isaac-dep '«

i .github

i bin
i docs
M lib

i test

gitignore
Jjsesre

) laklatlamasa

updated issue template asking users to give optional source code as w...
Moving xcode-iwd.sh to appium-instruments and updating the docs

Add comment to release docs

Deprecate --command-timeout server arg

Add tests for logging levels

Fix python swipe docs

set up babel/gulp code and update deps

mddo Anmdenid anl 40 b e al

582 % Unstar

{} Settings

3358 Y Fork 2065

146 contributors

git@github.com:appium/appiva & (3

Download ZIP

Latest commit 7aeed5c¢ 2 days ago

a month ago
3 months ago
12 days ago
4 days ago
19 days ago
a month ago

11 months ago

e e

C%SAUCELABS

Testing at the speed of awesome

Once Upon a Iime...

appium

|
nedecc

PR

E tdanae

PROBLEMS

WHAT HAPPENS WHEN YOU TRY TO PATCH UP ALL THE
BROKEN THINGS IN MOBILE AUTOMATION?

* Code not modular enough

* Code too modular

* ES5 hates new contributors

 CALLBACKS and async confusion

* Subprocess management

* Tight coupling between request and business logic
* Error handing all over the place

* OSS-specific project needs

MODULARITY?

Client =

CALLBACKS?

function foo (cb) {
bar(function (err) {
if (err) return cb(err);
baz(function (val, err) {
if (err) return cb(err);
async.eachSeries(list, function (i, cb) {
if (1% 2 ===20) {
fun(i, function (err) {
if (err) return cb(err);
otherFun(i, function (newVal, err) {
if (err) return cb(err);
val += newVal;

D
)
}

}, function (err) {
if (err) return cb(err);
cb(val);
D
1))
D

SUBPROCESS MANAGEMENT?

var spawn = require('child_process').spawn;

function boredTail (filePath, boredAfter, cb) {

cb = _.once(cb);
if (!boredAfter) boredAfter = 10000;
try {

var proc = spawn('tail', ['-f"', filePath]);
} catch (e) {
return cb(e);

}

proc.on('error', function (err) {
cb(err);

D

proc.stdout.on('data’, function (chunk) {
console.log('STDOUT: ' + chunk.toString('utf8').trim());

Ik

proc.on('exit', function () {
cb();

D

setTimeout(boredAfter, function () {
proc.kill();

K

SOLUTIONS

REWRITE ALL THE THINGS!

ES5 -> ES2015

e for .. of
 arrow functions
 real ‘classes’

 Callbacks -> async/await

« child_process -> https://github.com/appium/teen_process

« Pattern standardization and consolidation in helper libraries

* Proper separation of concerns / total rearchitecture

... and many small modules!!! (“micromodules”)

https://github.com/appium/teen_process

CALLBACKS -> ASYNC/AWAIT

function foo (cb) {

bar(function (err) {

D

if (err) return cb(err);
baz(function (val, err) {
if (err) return cb(err);
async.eachSeries(list, function (i, cb) {
if (1% 2===20) {
fun(i, function (err) {
if (err) return cb(err);
otherFun(i, function (newVal, err) {

if (err) return cb(err); "
val += newVal;
E

}, function (err) {
if (err) return cb(err);
cb(val);

D

D
b

D

async function foo () {

await bar();
let val = await baz();
for (let 1 of list) {
if (1 % 2 === 0) {
await fun(i);
}
val += await otherFun(i);

}

return val;

child_process -> teen_process

var spawn = require(‘'child_process').spawn;

function boredTail (filePath, boredAfter, cb)

cb = _.once(cb);
if (!boredAfter) boredAfter = 10000; import { SubProcess } from 'teen_process';
try {
var proc = spawn('tail’, ['-f', filePath]); async function boredTail (filePath, boredAfter = 10000) (

} catch (e) {

return cbe): let p = new SubProcess('tail', ['-f", filePathl);
} p.on('output’, stdout => {
proc.on('error', function (err) { if (stdout) {

cb(err); ||~ console.log('STDOUT: ${stdout.trim()}');
iioc.stdout.on('data', function (chunk) { })?

console.log('STDOUT: ' + chunk.toString('utf8').trim()); .
D; await p.start();
proc.on('exit', function () { await Bluebird.delay(boredAfter);

cb(); await p.stop();
D }

setTimeout (boredAfter, function () {
proc.kill();

1

MODULARITY / SEPARATION

Client =

MODULARITY / SEPARATION

Wire

Sz Protocol

Base Driver

CONVENTIONAL WISDOM

OR ME ATTENDING TOO MANY CONVENTIONS?

* Micromodules / Tiny modules everywhere
« One module per discrete bit of functionality
« NPM and SemVer to manage module relationships
 One-to-one relationship between modules and repos

* Microservices / SOA!
« Monoliths are bad
« Components should be hermetically compartmentalized and independent
« Components should talk over the network using messaging or RPC

BENEFITS

WHAT DID WE THINK MICROMODULES WOULD GIVE US?

* Separation of concerns
* |Increased test surface area and asynchronous Cl for components

* Ability to version components separately and use NPM + SemVer for easy
dependency management

* Ability to release components as their own modules for independent use by
third parties

DRAWBACKS

WHAT ACTUALLY HAPPENED?

* Working with many repos is frustrating

Git history, repo stats, etc... really clunky to find
Context-switching when you need to work on a different module/repo

Git history clogged with “update this dep to version xx.yy.zz" and takes discipline
to include context

* Working with many modules is frustrating

When everything is babelified, just rm —rf node_modules && npm install takes
forever.

Cross-package/multi-package changes are hard—PRs all over the place, code
must be merged in certain orders

Lots of module-level boilerplate, even when abstracted (gulp, build tools,
transpilation and test watching, etc...)

DRAWBACKS CONT...

WHAT ACTUALLY HAPPENED?

* Dependency management always sucks, and now we had a lot of it
« 3" party deps are always changing. Who wants to update lodash in 50 different
places?
« 3" party deps at different versions across 15t party modules can cause problems

* FEven 15t party deps at different versions cause problems, e.g. with instanceof
checks

* Per-module Cl is nice but at the end of the day doesn't save time. Smart
incremental builds are different than per-repo or per-module builds.

BENEFITS REVISITED

WHAT DID WE ACTUALLY NEED?

Separation of concerns

Increased test surface area and asynchronous Cl for components

277 Ability to release components as their own modules for independent use by
third parties

WHAT HAPPENED?

@

* Assumed "micromodules” === "microrepos”

* Applied the "open source” model of many separate projects too eagerly. We are
open source, but we're still (mostly) one app

* Fooled by the family resemblance between "micromodules” and "microservices”

« Contemplated a "microservice” architecture without understanding why it didn't
apply in our case

« We had components that did RPC, but crucially ours was 1 app in memory, with
subprocesses, that didn't need to scale internal components horizontally. It
already was a “service”.

* Superficially, it seemed like we needed these strategies. But we didn't.

MICROSERVICES / SOA

* You need to distribute processing or data across many machines/VMs/
containers because one isn't good enough

* Your app conceptually has multiple distinct responsibilities which can feasibly
be broken up into different ‘services’. You already have a good idea of where to
draw these lines

* Your services can do their job behind load balancers / while horizontally scaled

* You need fault tolerance so that your services/containers/VMs can crash
without affecting customer experience

« Changes usually don't happen across multiple services simultaneously

« All of the above are so important that you want to deal with a whole new level
of complexity, asynchronicity, and orchestration

MICROMODULES

* You need each module to be npm install-able on its own
* You are OK religiously following SemVer
« Each module is conceivably genuinely useful as a standalone piece of software

« For 15t party (private or for-all-intents-and-purposes private) modules, you don't
have single-leaf nodes.

* |f a module is imported by only one other module, does it really need to be
published and managed separately?

« Micromodules philosophy is great for encouraging more READMEs, more tests,
more CIl, more separation of concern, etc... But it does not require those nor do
they require it.

MICROREPOS

WITHOUT THE CARGO CULT

@

You want different communities of people to engage with or manage different
aspects of your project

... and that's about it! You probably don't want microrepos.

Seriously, check out Babel and other monorepos

Remember, "monorepo” == "monolith”

MICRO OR MONO

I am building... Microservices Micromodules Microrepos

Distributed Saa$S app, cloud Yes Yes Maybe
platform, hugely popular - 1 per service
web app, etc... - 1 per set of shared
utilities
Desktop app or web app No No No

with low scaling
requirements

Open source library with No Yes Probably not
lots of individually useful - 1 perindividually
components useful component

HAPPY ACCIDENTS

* We learned a lot about NPM and module management

* We built useful tools to help us manage lots of modules (packageweb,
turtledeps, diagnoss) and discovered others (greenkeeper, semantic release)

* The constraints of micromodules led us to spit up our app and modularize it
across much better boundaries. We learned so much more about our problem
space.

* We became experts in Node build tools and transpilation. The ES2015 rewrite
has paid huge dividends, especially async/await

 We wrote many more tests and READMEs and have Cl set up for everything

FINAL TAKEAWAYS

THE END OF OUR CAUTIONARY TALE

 The benefit of ES2015 and in particular async/await was totally worth the cost and
complexity of transpilation

» Develop a strong cargo-cult radar
« Adopt a default stance of suspicion towards trends and buzzwords

« Before you can microservice or micromodule, you must deeply understand the
responsibilities and capabilities of your app

« You really want a strong distinction between 15t party deps and 3 party deps (left-pad,
anyone?)

« Microservices/micromodules are no substitute for, and are not identical with, general good
programming practices (modularity, separation of concerns, documentation and READMEs,
writing testable code, writing tests, etc...)

« At the end of the day, itis only by diving in and building an architecture that you will come to
understand whether it is the right one or not.

APPIUM'S FUTURE

A MORE MODEST PROPOSAL

RESOURCES

EXERCISES FOR THE READER

* Laurie Voss's talk on Microservices: https://www.youtube.com/watch?
v=VijSWboZP-8

* Martin Fowler's Microservices article: http://martinfowler.com/articles/
microservices.html

* Dan Luu on Monorepos: http://danluu.com/monorepo/

« Babel's Monorepo justification: https://github.com/babel/babel/blob/master/
doc/design/monorepo.md

* Simon Stewart on Monorepos: http://blog.rocketpoweredjetpants.com/
2012/11/ruminations-on-code-bases-i-have-known.html

https://www.youtube.com/watch?v=VijSWboZP-8
https://www.youtube.com/watch?v=VijSWboZP-8
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
http://danluu.com/monorepo/
http://danluu.com/monorepo/
https://github.com/babel/babel/blob/master/doc/design/monorepo.md
https://github.com/babel/babel/blob/master/doc/design/monorepo.md
http://blog.rocketpoweredjetpants.com/2012/11/ruminations-on-code-bases-i-have-known.html
http://blog.rocketpoweredjetpants.com/2012/11/ruminations-on-code-bases-i-have-known.html

The End

YW @jlipps | @saucelabs | @AppiumDevs

@ SAUCELABS

Questions?

YW @jlipps | @saucelabs | @AppiumDevs

@ SAUCELABS

I hank you

YW @jlipps | @saucelabs | @AppiumDevs

@ SAUCELABS

