
April 12, 2016 | PhillyETE | Philadelphia, PA

T h e N o d e M o d u l e D i a r i e s
J O N A T H A N L I P P S , D I R E C T O R O F E N G I N E E R I N G

@ j l i p p s | @ s a u c e l a b s | @ A p p i u m D e v s

Once Upon a Time…

+

PROBLEMS

• Code not modular enough

• Code too modular

• ES5 hates new contributors

• CALLBACKS and async confusion

• Subprocess management

• Tight coupling between request and business logic

• Error handing all over the place

• OSS-specific project needs

W H A T H A P P E N S W H E N Y O U T R Y T O P A T C H U P A L L T H E
B R O K E N T H I N G S I N M O B I L E A U T O M A T I O N ?

MODULARITY?

CALLBACKS?

SUBPROCESS MANAGEMENT?

SOLUTIONS

• ES5 -> ES2015
• for … of

• arrow functions

• real ‘classes’

• Callbacks -> async/await

• child_process -> https://github.com/appium/teen_process

• Pattern standardization and consolidation in helper libraries

• Proper separation of concerns / total rearchitecture

• … and many small modules!!! (“micromodules”)

R E W R I T E A L L T H E T H I N G S !

https://github.com/appium/teen_process

CALLBACKS -> ASYNC/AWAIT

child_process -> teen_process

MODULARITY / SEPARATION

MODULARITY / SEPARATION

CONVENTIONAL WISDOM

• Micromodules / Tiny modules everywhere
• One module per discrete bit of functionality

• NPM and SemVer to manage module relationships

• One-to-one relationship between modules and repos

• Microservices / SOA!
• Monoliths are bad

• Components should be hermetically compartmentalized and independent

• Components should talk over the network using messaging or RPC

O R M E A T T E N D I N G T O O M A N Y C O N V E N T I O N S ?

MICROMODULES!!1

BENEFITS

• Separation of concerns

• Increased test surface area and asynchronous CI for components

• Ability to version components separately and use NPM + SemVer for easy
dependency management

• Ability to release components as their own modules for independent use by
third parties

W H A T D I D W E T H I N K M I C R O M O D U L E S W O U L D G I V E U S ?

DRAWBACKS

• Working with many repos is frustrating
• Git history, repo stats, etc… really clunky to find

• Context-switching when you need to work on a different module/repo

• Git history clogged with “update this dep to version xx.yy.zz” and takes discipline
to include context

• Working with many modules is frustrating

• When everything is babelified, just rm –rf node_modules && npm install takes
forever.

• Cross-package/multi-package changes are hard—PRs all over the place, code
must be merged in certain orders

• Lots of module-level boilerplate, even when abstracted (gulp, build tools,
transpilation and test watching, etc…)

W H A T A C T U A L L Y H A P P E N E D ?

DRAWBACKS CONT…

• Dependency management always sucks, and now we had a lot of it
• 3rd party deps are always changing. Who wants to update lodash in 50 different

places?

• 3rd party deps at different versions across 1st party modules can cause problems

• Even 1st party deps at different versions cause problems, e.g. with instanceof
checks

• Per-module CI is nice but at the end of the day doesn’t save time. Smart
incremental builds are different than per-repo or per-module builds.

W H A T A C T U A L L Y H A P P E N E D ?

BENEFITS REVISITED

• Separation of concerns

• Increased test surface area and asynchronous CI for components

• Ability to version components separately and use NPM + SemVer for easy
dependency management

• ??? Ability to release components as their own modules for independent use by
third parties

W H A T D I D W E A C T U A L L Y N E E D ?

WHAT HAPPENED?

• Assumed “micromodules” === “microrepos”

• Applied the “open source” model of many separate projects too eagerly. We are
open source, but we’re still (mostly) one app

• Fooled by the family resemblance between “micromodules” and “microservices”
• Contemplated a “microservice” architecture without understanding why it didn’t

apply in our case

• We had components that did RPC, but crucially ours was 1 app in memory, with
subprocesses, that didn’t need to scale internal components horizontally. It
already was a “service”.

• Superficially, it seemed like we needed these strategies. But we didn’t.

W H Y D I D W E O V E R E N G I N E E R ?

MICROSERVICES / SOA

• You need to distribute processing or data across many machines/VMs/
containers because one isn’t good enough

• Your app conceptually has multiple distinct responsibilities which can feasibly
be broken up into different ‘services’. You already have a good idea of where to
draw these lines

• Your services can do their job behind load balancers / while horizontally scaled

• You need fault tolerance so that your services/containers/VMs can crash
without affecting customer experience

• Changes usually don’t happen across multiple services simultaneously

• All of the above are so important that you want to deal with a whole new level
of complexity, asynchronicity, and orchestration

W I T H O U T T H E C A R G O C U LT

MICROMODULES

• You need each module to be npm install-able on its own

• You are OK religiously following SemVer

• Each module is conceivably genuinely useful as a standalone piece of software

• For 1st party (private or for-all-intents-and-purposes private) modules, you don’t
have single-leaf nodes.

• If a module is imported by only one other module, does it really need to be
published and managed separately?

• Micromodules philosophy is great for encouraging more READMEs, more tests,
more CI, more separation of concern, etc… But it does not require those nor do
they require it.

W I T H O U T T H E C A R G O C U LT

MICROREPOS

• You want different communities of people to engage with or manage different
aspects of your project

• … and that’s about it! You probably don’t want microrepos.

• Seriously, check out Babel and other monorepos

• Remember, “monorepo” !== “monolith”

W I T H O U T T H E C A R G O C U LT

MICRO OR MONO

I	 am	 building… Microservices Micromodules Microrepos

Distributed	 SaaS	 app,	 cloud	
platform,	 hugely	 popular	
web	 app,	 etc…

Yes Yes	
-‐ 1	 per	 service	
-‐ 1	 per	 set	 of	 shared	

utilities

Maybe

Desktop	 app	 or	 web	 app	
with	 low	 scaling	
requirements

No No No

Open	 source	 library	 with	
lots	 of	 individually	 useful	
components

No Yes	
-‐ 1	 per	 individually	

useful	 component	

Probably	 not

HAPPY ACCIDENTS

• We learned a lot about NPM and module management

• We built useful tools to help us manage lots of modules (packageweb,
turtledeps, diagnoss) and discovered others (greenkeeper, semantic release)

• The constraints of micromodules led us to spit up our app and modularize it
across much better boundaries. We learned so much more about our problem
space.

• We became experts in Node build tools and transpilation. The ES2015 rewrite
has paid huge dividends, especially async/await

• We wrote many more tests and READMEs and have CI set up for everything

B E I N G W R O N G H A S I T S P E D A G O G I C A L A D V A N T A G E S

FINAL TAKEAWAYS

• The benefit of ES2015 and in particular async/await was totally worth the cost and
complexity of transpilation

• Develop a strong cargo-cult radar

• Adopt a default stance of suspicion towards trends and buzzwords

• Before you can microservice or micromodule, you must deeply understand the
responsibilities and capabilities of your app

• You really want a strong distinction between 1st party deps and 3rd party deps (left-pad,
anyone?)

• Microservices/micromodules are no substitute for, and are not identical with, general good
programming practices (modularity, separation of concerns, documentation and READMEs,
writing testable code, writing tests, etc…)

• At the end of the day, it is only by diving in and building an architecture that you will come to
understand whether it is the right one or not.

T H E E N D O F O U R C A U T I O N A R Y T A L E

APPIUM’S FUTURE
A M O R E M O D E S T P R O P O S A L

RESOURCES

• Laurie Voss’s talk on Microservices: https://www.youtube.com/watch?
v=VijSWboZP-8

• Martin Fowler’s Microservices article: http://martinfowler.com/articles/
microservices.html

• Dan Luu on Monorepos: http://danluu.com/monorepo/

• Babel’s Monorepo justification: https://github.com/babel/babel/blob/master/
doc/design/monorepo.md

• Simon Stewart on Monorepos: http://blog.rocketpoweredjetpants.com/
2012/11/ruminations-on-code-bases-i-have-known.html

E X E R C I S E S F O R T H E R E A D E R

https://www.youtube.com/watch?v=VijSWboZP-8
https://www.youtube.com/watch?v=VijSWboZP-8
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
http://danluu.com/monorepo/
http://danluu.com/monorepo/
https://github.com/babel/babel/blob/master/doc/design/monorepo.md
https://github.com/babel/babel/blob/master/doc/design/monorepo.md
http://blog.rocketpoweredjetpants.com/2012/11/ruminations-on-code-bases-i-have-known.html
http://blog.rocketpoweredjetpants.com/2012/11/ruminations-on-code-bases-i-have-known.html

The End

@ j l i p p s | @ s a u c e l a b s | @ A p p i u m D e v s

Questions?

@ j l i p p s | @ s a u c e l a b s | @ A p p i u m D e v s

Thank you

@ j l i p p s | @ s a u c e l a b s | @ A p p i u m D e v s

