
©2015, Amazon Web Services, Inc. or its affiliates. All rights reserved

Serverless Design Patterns  
with AWS Lambda

Dr. Tim Wagner
General Manager, AWS Lambda and Amazon API Gateway

April 11, 2016

DevOps are  
2016’s punch cards

DevOps are  
2016’s punch cards

Which operating system patch level?
How many
servers?What kind of

servers?

Which
deployment

tool?

Are we running the right version?

Do we have
the security

patch?

Scalability, reliability, and fault
tolerance are hard.

What if you could achieve them without
working for it?

A: Serverless
Q: What is the right

abstraction level for the
cloud?

PaaS

PaaS
Too curated
Fat clients

Wrong unit: Deployed
(monolithic) applications

[Micro] Application Design for the Cloud

API

Function

API

Function

API

Function

API

Function

API

Function

The Serverless Compute Manifesto

• Functions are the unit of deployment and scaling.
• No machines, VMs, or containers visible in the programming model.
• Permanent storage lives elsewhere.
• Scales per request. Users cannot over- or under-provision capacity.
• Never pay for idle (no cold servers/containers or their costs).
• Implicitly fault tolerant because functions can run anywhere.
• BYOC – Bring your own code.
• Metrics and logging are a universal right.

AWS Lambda and Amazon API Gateway

Microservices where you don’t
have to think about:

• Servers
• Being over/under capacity
• Deployments
• Scaling and fault tolerance
• OS or language updates
• Metrics and logging
• Paying for idle time

…but where you can:

• Quickly code in the cloud
• Bring your own code… even

native libraries
• Create backends, event

handlers, and data processing
systems

• Easily call enterprise APIs
• Run code in parallel

Democratized scale!

So… how do you build apps?

What They Don’t Look Like

• Not monolithic
– Expressed as a collection of independent functions
– …with APIs where you need abstraction boundaries

• Skip the boring parts
– AWS provides the webserver and API hosting

(plus, we need to see the requests)
– AWS provides basic metrics and logging

(plus, it’s harder than it sounds)

• Skip the hard parts (distributed algorithms)
– Fault-tolerance and scaling don’t show up in the app code

What They *Do* Look Like

• Individual functions
– Often with HTTP endpoints
– Sometimes hooked up to events or other services

• Often asynchronous
– That can also run on a schedule
– Not necessarily simple

• Application scaling / parallelism should always be simple
• Algorithms should be as complicated as they need to be

– Serverless scales down to a single line of Python….
– …and scales up to a 50+ MB C++ algorithm

But… how do I scale, really?

How to Run a 1 Hour Task

• Old school: Nice big server running for an hour
• What happens if the machine dies or there’s an intermittent error?
• Takes an hour. (Unless the machine dies, then it could take 2.)
• What if it really only took 15 minutes? 75% waste…ugh.
• Popular metaphor: Pets versus cattle

• New school: 60, 1-minute jobs
• Who cares if a machine dies? That job just restarts.
• Who cares what they run on? Perf comes from parallelism, not hw.
• Done in a minute (worst case, 2).
• No wasted time or money. Guaranteed.
• Metaphor: Drive-through window

What Programming Model???

• Choice of language
– Java method
– Python function
– Node.js function
– Bring your own (yep, we support that)

• Choice of library (anything you want)
• JSON as schema / inter-service format
• HTTPS on the wire

Let’s see it…

Events: JSON + Functions

Amazon S3 Amazon
DynamoDB

Amazon
Kinesis

AWS
CloudFormatio

n

AWS
CloudTrail

Amazon
CloudWatch
Logs / Events

Amazon SNSAmazon 
SWF

Amazon 
SES

Amazon 
API Gateway

Amazon
Cognito

AWS 
IoT

Example: Build an audit system in 5 minutes

1. Turn on AWS CloudTrails (AWS API logging).
2. Hook up Amazon CloudWatch events to 

your AWS Lambda audit function.
3. Send yourself a text message if your filter

detects something suspicious.

Amazon
CloudWatch
Logs / Events

Frameworks Bad; Services Good

• Amazon S3: object storage
• Amazon DynamoDB: NoSQL database
• Amazon SNS: messaging and notifications
• Amazon Kinesis: real-time streaming
• Amazon SES: email sending and receiving
• Amazon CloudWatch Events: event hub
• …and the rest of AWS
• …and anything else on public Internet (aka “no lockin”)
• …plus your own private APIs (aka “VPC” / enterprise)

Drill-down: Resource Sizing in AWS Lambda

• AWS Lambda offers 23 “power levels”
• Higher levels offer more memory and more CPU power

– 128 MB, lowest CPU power
– 1.5 GB, highest CPU power

• Higher power levels for CPU-bound and bursty tasks
• Compute price scales with the power level
• Billed duration ranges from 100ms to 5 minutes

Drill-down: Versioning

• Immutable versions of your functions
• One mutable working arena per function
• Aliases: server-side updates
• Blue/green deployments? Not needed, but…
• Traffic shaping? Sure! (and easy)
• API Gateway

– Immutable deployments
– API stages
– Swagger import (“API as code”)

• Goal: Open source microservice representation for both APIs and code

But what *is* it?

• Linux containers as an implementation, not a programming
or deployment abstraction
– Process and network isolation, cgroups, seccomp, …
– Off-the-shelf language runtimes
– We minimize innovation here

• The world’s biggest bin-packing algorithm
– High speed, highly distributed work routing and placement
– We maximize innovation here

• Predictive capacity management
– Purpose-built, massively scaled Language-Runtime-aaS

• API Gateway: Swagger interpreter as reverse proxy

Serverless Design Patterns 
(or, What can you do with it?)

Serverless Web Apps

1. Amazon S3 for serving static content
2. AWS Lambda for dynamic content
3. Amazon API Gateway for https access
4. Amazon DynamoDB for NoSQL data storage

Dynamic content in
AWS Lambda

Data stored in
Amazon

DynamoDB

API GatewayStatic content in
Amazon S3

A Scalable Backend for Mobile Apps or IoT

1. Pick one:
a. Mobile apps: AWS Mobile SDK + Amazon Cognito (authorization)
b. IoT devices: AWS IoT

2. AWS Lambda’s “Mobile Backend” blueprint
3. Amazon DynamoDB for data storage

AWS Lambda Amazon
DynamoDB

Principle of Complexity Concentration

jvm
providers

 Java compiler and
tool providers

Java developers

Principle of Complexity Concentration

Function
hosting

Event and app
ecosystems

Developers

Amazon S3 Bucket Triggers

• Pick the S3 Lambda blueprint
• Select your bucket as the event source

Amazon S3 bucket events

Original object Compressed object
1

2

3

AWS Lambda

Aside: Functions for Behavioral Abstraction

Amazon
DynamoDB

Call Events

Customize
A

PI

Real-time Analytics Processing

1. Amazon Kinesis for high-speed data ingestion
2. Select AWS Lambda’s “Kinesis” blueprint
3. Store aggregated results in Amazon Redshift, Amazon S3,

Amazon DynamoDB

Data ingestion with
Amazon Kinesis 

(PUT record)

Records retrieved by
AWS Lambda

Your code runs once
per [batch of] records

Amazon S3

Amazon
DynamoDB

smart
devices

click
stream

log data

Amazon
Redshift

How Work Arrives

• Synchronous calls (clients, APIs, cross-calls)
• Asynchronous calls (example: Amazon S3)
• Polling other services (example: Amazon Kinesis)
• Schedules (“cron”)
• If another service is involved, we call it an “event”

– Trivial programming model (IJJ – It’s Just JSON)
– Operational complexity stays in the cloud, where it belongs:

• S3 and AWS Lambda handle impedance matching behind the scenes

New App Ecosystems: 
 Alexa Apps + Slack = Serverless Bots!

Alexa, tell Slack to
send, “I’m giving the

demo now.”

Message Retrieval via scheduled polling
Kevin says,  

“Break a leg!”

Message Upload
(via Slack API)

Team  
(channel users)

Slack

SaaS and Enterprise Integration

Customer Success Stories

Pay-per Request

• Buy compute time in  
100 ms increments

• Low request charge
• No hourly, daily, or

monthly minimums
• No per-device fees

Never pay for idle!

Free Tier

1 million requests and 400,000 GBs of compute

every month, every customer

AWS Lambda, API Gateway, and AWS IoT Regions

Available regions

Join the serverless revolution!

Product manager or business
analyst? Check out
aws.amazon.com/lambda for
scenarios and customer stories.

0.

Developer? Go to the AWS
Lambda console, create a
function, and run it.  
(The first million invokes are on us!)

1.

Congrats, you’re a Lambda
function expert! Add an event
source or an HTTP endpoint.2.

Build a mobile, voice, or IoT
backend with a few lines of
code.3.

Consign your devops tools to
the dustbin of history.4.

Follow AWS Lambda and  
Amazon API Gateway!

 

aws.amazon.com/blogs/compute 
aws.amazon.com/lambda 
AWS Lambda forum
t: @timallenwagner

