
REALM
A NEW, EASY TO USE MOBILE

DATABASE & OBJECT
FRAMEWORK

@DONNFELKER

ABOUT ME

Independent Consultant in mobile and web
Caster.IO - A bite-sized video training platform for

Android Developers
I've written a few books on Android.

Have had 2 apps in the top free category on Google Play
for over 5 years.

twitter: @donnfelker

WHAT IS
REALM?

A FAST, NEW DATABASE
WRITTEN FROM THE GROUND UP

IN C++

A REPLACEMENT FOR SQLITE
REGULAR JAVA OBJECTS (POJO'S)

// Define your model class by extending the RealmObject
public class Dog extends RealmObject {
 @PrimaryKey
 private int id;
 @Required // Name cannot be null
 private String name;
 private int age;

 // ... Generated getters and setters ...
}

SAVING OBJECTS
// Use them like regular java objects
Dog dog = new Dog();
dog.setName("Rex");
dog.setAge("1");

// Get a Realm instance
Realm realm = Realm.getDefaultInstance();

// Persist your data easily
realm.beginTransaction();
realm.copyToRealm(dog);
realm.commitTransaction();

RETRIEVING DATA
Realm realm = Realm.getDefaultInstance();

// Query Realm for all dogs less than 2 years old
RealmResults<Dog> puppies =
 realm.where(Dog.class)
 .lessThan("age", 2)
 .findAll();

puppies.size(); // => 1

OTHER QUERY MODIFIERS
between()

greaterThan()
lessThan()

greaterThanOrEqualTo()
lessThanOrEqualTo()

equalTo()
notEqualTo()
contains()
beginsWith()
endsWith()

THANK YOU
HAVE A GOOD DAY

@DONNFELKER

RELATIONSHIPS
// Define your relationships with RealmList
public class Person extends RealmObject {

 private String firstName;
 private String lastName;
 private RealmList<Dog> dogs;
 // ... Generated getters and setters ...
}

WHERE DO
YOU GET IT?

REALM.IO
DOCS AND ALL THAT OTHER GOODNESS

REALM IS FREE
ALL PRODUCTS ARE OPEN SOURCE (ANDROID, IOS, REACT, ETC)

CORE WILL BE OPEN SOURCED - LATER

CORE IS WRITTEN IN C++, FROM THE GROUND UP.

SETUP
// Add Realm to the classpath in the root build.gradle file
buildscript {
 repositories {
 jcenter()
 }
 dependencies {
 classpath "io.realm:realm-gradle-plugin:0.88.3"
 }
}

// Then ...

// In your projects build.gradle file
apply plugin: 'realm-android'

SETUP CONTINUED

EXTEND REALMOBJECT AND GO!
public class Dog extends RealmObject {
 // ...
}

WHY USE IT?

NO MORE
SQL

SERIOUSLY THOUGH, YOU GET TO WORK WITH OBJECTS
RealmQuery<Dog> query = realm.where(Dog.class);

// Add query conditions:
query.equalTo("name", "Fido");
query.or().equalTo("name", "Odie");

// Execute the query:
RealmResults<Dog> result1 = query.findAll();

// Or do the same all at once (the "Fluent interface"):
RealmResults<Dog> result2 = realm.where(Dog.class)
 .equalTo("name", "Fido")
 .or()
 .equalTo("name", "odie", Case.INSENSITIVE)
 .findAll();

TRANSACTIONS
// Will automatically handle begin/commit, and cancel if an error happens.
realm.executeTransaction(new Realm.Transaction() {
 @Override
 public void execute(Realm realm) {
 Dog dog = realm.where(Dog.class).equalTo("name", "Fido").findFirst();
 dog.setAge(15);
 }
})

MANUAL TRANSACTIONS
try {
 realm.beginTransaction();
 Dog dog = realm.where(Dog.class).equalTo("name", "Fido").findFirst();
 dog.setAge(15);
 realm.commitTransaction();
} catch (Exception ex) {
 // rollback
 realm.cancelTransaction();
}

REACTIVE PROGRAMMING
QUERY RESULTS UPDATE AUTOMATICALLY

#LEMMESHOWYOU
Dog d1 = realm.where(Dog.class).equals("id", 123).first();

// register a listener to get notified when the object is updated.
d1.registerChangeListener(new RealmChangeListener() {
 @Override
 public void onChange() { // called once the query complete and on every update
 // do something now that the obj is updated
 }
});

// assume code below is in some other thread/etc (Android Service, AsyncTask, etc)

// Retrieve the same dog as above
Dog d2 = realm.where(Dog.class).equals("id", 123).first();
realm.beginTransaction();
d2.setAge(12);
realm.commitTransaction();

// d2s change listener gets called after the commit.*

REALMRESULTS<T> ARE ALSO AUTO-UPDATING
RealmResults<Dog> puppies = realm.where(Dog.class).lessThan("age", 2).first();
puppies.registerChangeListener(new RealmChangeListener() {
 @Override
 // Gets called any time any object that this query represents gets updated
 public void onChange() {
 // do something with the updated results
 }
});

// in some other thread
realm.beginTransaction();
Dog pup = realm.createObject(Dog.class);
pup.setName("Snoop");
pup.setAge(1);
realm.commitTransaction();

// At this piont the puppies change listener will be invoked as the query
// results have automatically been updated.

WATCH THE ENTIRE REALM
realm.registerChangeListener(new RealmChangeListener() {
 @Override
 // Gets called any time the Realm data changes
 public void onChange() {
 // do something with the updated Realm
 }
});

FINE GRAINED
CHANGE LISTENERS ARE COMING

REALM SECURITY
AES-256 ENCRYPTION IS SUPPORTED OUT OF THE BOX
// Set up with the config
byte[] key = new byte[64];
new SecureRandom().nextBytes(key);
RealmConfiguration config = new RealmConfiguration.Builder(context)
 .encryptionKey(key)
 .build();

// Realm data is now encrypted
Realm realm = Realm.getInstance(config);

MULTI
THREADING

THE ONLY LIMITATION
The only limitation is that you cannot randomly pass
Realm objects between threads. If you need the same
data on another thread you just need to query for that

data on the that other thread. Furthermore, you can
observe the changes using Realms reactive architecture.

Remember - all objects are kept up to date between
threads - Realm will notify you when the data changes.

— Realm Docs

THE GOAL OF REALMS THREADING DECISIONS
The key takeaway here is that Realm makes it effortless
to work with data on multiple threads without having to

worry about consistency or performance because objects
and queries are auto-updating at all times.

— Realm Docs

MULTI THREADING IS HARD
Concurrency in software is difficult [...] Non-trivial multi-

threaded programs are incomprehensible to humans.1

— Edward A Lee PHD Berkeley University of California

1 The Problem with Threads PDF Link

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf

HOW ARE THREADING PROBLEMS ARE NORMALLY SOLVED?

LOCKS
Unfortunately, when you dive into the root of the problem
you realize you have to lock everything during reads and

writes to fully ensure that the data is consistent.

LOCKS ARE
SLOW

THREADING OPTIONS FOR REALM
▸ Operate on Android's Main Thread2

▸ Use the Async API

2 Yes, it's possible, but it gives a lot of developers the heebee jeebees.

THE ASYNC API
RealmResults<Dog> dogs = realm.where(Dog.class).findAllAsync();
// dogs is an empty list at this point (query is running in the BG)

dogs.addRealmChangeListener(new RealmChangeListener() {
 @Override
 public void onChange() { // called once the query completes and on every update
 // do something with the query results
 }
});

// As soon as the query completes the change listerner will be notified
// that the results are available (and will continue to get notified)
// of new updates

// Working with a single object query
Dog dog = realm.where(Dog.class).equalTo("age", 2).findFirstAsync();
dog.addRealmChangeListener(new RealmChangeListener() {
 @Override
 public void onChange() { // called once the query completes and on every update
 // do something with the dog object
 }
});

ANOTHER ASYNC API EXAMPLE
RealmResults<Dog> puppies = realm.where(Dog.class).lessThan("age", 2).findAll();
puppies.size(); // => 0 - No puppies in the Realm DB

// Query and update the result asynchronously in another thread
realm.executeTransaction(new Realm.Transaction() {
 @Override
 public void execute(Realm realm) {
 // begin & end transcation calls are done for you.
 Dog theDog = realm.createObject(Dog.class);
 theDog.setAge(3);
 // You could also query and alter objects as well
 }
}, new Realm.Transaction.Callback() {
 @Override
 public void onSuccess() {
 // Original Queries and Realm objects are automatically updated.
 puppies.size(); // => 1 because there is one puppy now
 }
});

RXJAVA SUPPORT
// Combining Realm, Retrofit and RxJava (Using Retrolambda syntax for brevity)
// Load all persons and merge them with their latest stats from GitHub (if they have any)
Realm realm = Realm.getDefaultInstance();
GitHubService api = retrofit.create(GitHubService.class);
realm.where(Person.class).isNotNull("username").findAllAsync().asObservable()
 .filter(persons.isLoaded)
 .flatMap(persons -> Observable.from(persons))
 .flatMap(person -> api.user(person.getGithubUserName())
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe(user -> showUser(user));

EXAMPLE APP - HTTP://BIT.LY/REALM-RXJAVA

I heard that you can use Realm
on the main thread. Why is
that possible? Should I?

POSSIBLE? YES.
ADVICE: USE THE ASYNC API

Why is it possible to run on the main thread though?

BECAUSE REALM IS
MEGA FAST

WE'LL GET TO THAT IN A SECOND

REALM'S ARCHITECTURE
UNDERSTANDING REALMS INTERNALS

MVCC DATABASE

COPY-ON-WRITE

ZERO-COPY ARCHITECTURE

ORMS MOVE DATA AROUND IN MEMORY

... AND THATS OK ...
JUST TAKES TIME AND MEMORY

REALMS DATABASE FILE IS MEMORY MAPPED

The whole file is memory-mapped & is the same format on
disk as it is in memory

BUT WHAT DOES THIS EVEN MEAN?

YOU'RE TALKING DIRECTLY TO THE
DB AT ALL TIMES, NOT AN

ABSTRACTION

CHANGE OF SCHEMA - NO PROBLEM

USE MIGRATIONS

// Example migration adding a new class
RealmMigration MyMigration = new RealmMigration() {
 @Override
 public void migrate(DynamicRealm realm, long oldVersion, long newVersion) {

 // DynamicRealm exposes an editable schema
 RealmSchema schema = realm.getSchema();

 // Migrate to version 1: Add a new class.
 // Example:
 // public Person extends RealmObject {
 // private String name;
 // private int age;
 // // getters and setters left out for brevity
 // }
 if (oldVersion == 0) {
 schema.create("Person")
 .addField("id", long.class, FieldAttribute.PRIMARY_KEY)
 .addField("name", String.class)
 .addField("age", int.class);
 oldVersion++;
 }
 }
}

// in your init
RealmConfiguration config = new RealmConfiguration.Builder(context)
 .schemaVersion(1) // Must be bumped when the schema changes
 .migration(new MyMigration()) // Migration to run instead of throwing an exception
 .build()

REALM BROWSER
OSX ONLY

WHAT'S COMING
REMOVING REQUIREMENT TO EXTEND REALMOBJECT
BETTER RXJAVA SUPPORT FOR CUSTOM SCHEDULERS
MORE PLATFORMS FOR MORE GOODNESS

FEATURE REQUESTS/BUGS/ETC
github.com/realm/realm-java

THE NOT SOO GOOD
NO CUSTOM RXJAVA SCHEDULERS, YET,

NO COMPOSITE PRIMARY KEY CONSTRAINTS, YET.

PARADIGM SHIFT - NO PASSING BETWEEN THREADS.

WHO'S USING THIS ON ANDROID?
A LOT OF COMPANIES. HERE'S A FEW

YOU MIGHT HAVE HEARD OF ...
Starbucks, Shyp, Hyatt, IBM, Zappos, Stubhub, Shopsavvy,

Virgin Mobile, Subway, Falcon Pro 3, Allegiant Airlines,
Digi-Key, Taptalk, Cabify, Karma Wifi ...

WHO'S USING THIS ON OTHER
PLATFORMS (IOS)?

JUST LIKE ANDROID - A LOT. HERE'S A
FEW YOU MIGHT HAVE HEARD OF ...

Groupon, McDonalds, Zipcar, BBC, ZipRecruiter, Hipmunk,
Expensify, Concur, HipChat, Intuit, Oprah, Alibaba,

BodyBuilding.com, L'ORÉAL ...

Questions?

THANK YOU
@DONNFELKER

