
Code Quality 
Lessons Learned

Bryan Helmkamp
Philly ETE
April 11, 2016







@brynary

75,000+ Repositories



@brynary

60,000+ Developers



@brynary

1,500+ Organizations



@brynary

Six questions



@brynary

1. What is 
code quality?



@brynary

leg·a·cy  code 
/ˈlegəsē kōd/ 

• Noun.

• Code written by someone else; or

• Code written by you, more than two 
weeks ago



@brynary

Code quality has 
many meanings.



@brynary

• Simple

• Well-tested

• Bug free

• Clear

• Refactored

• Documented

• Extensible

• Fast

Code Quality



@brynary

Make sure you’re team is on 
the same page about your 

goals.



“
@brynary

Any code less decomposed than mine is a 
mess. Any code more decomposed than 

mine is over-engineered.

—Unknown



@brynary

2. What’s the best way to 
measure complexity?



@brynary



@brynary

• Cyclomatic complexity

• ABC metric

• Lines of code (LOC)

Code Metrics



@brynary

ABC Metric

A² + B² + C²√



@brynary

Use a metric that resonates 
for your team.



@brynary

If you can’t decide, use 
Lines of Code.

(And get back to work.)



@brynary

3. Why are older projects 
harder to maintain?



@brynary

Sloppy code is 
self-reinforcing.



@brynary

Pressure

SlopLate



@brynary



@brynary

Code quality is a moving 
target.



@brynary



@brynary



https://www.flickr.com/photos/thomashawk/14165032149

https://www.flickr.com/photos/thomashawk/14165032149


@brynary

4. What’s the optimal 
size for a pull request?



@brynary

http://www.ibm.com/developerworks/rational/library/11-proven-practices-for-peer-review/



@brynary

Fewer issues are found 
in larger pull requests.

(Not because larger PRs have fewer issues.)



@brynary

Keep pull requests under 
400 LOC.



“
@brynary

We are more receptive to feedback from 
pedantic robots than pedantic people, and 

robots are more reliable.

—Brandon Keepers, GitHub



@brynary

5. When is sloppy code 
not a problem?



@brynary

Proving a hypothesis



@brynary



@brynary

Build the first one to 
throw it away.



@brynary

Omega Mess

Code that only has inbound 
dependencies and does not change.

h/t @sandimetz



@brynary

6. What is the biggest 
enemy to clean code?



@brynary

Apathy?





@brynary

Ability?



I HAVE NO IDEA 
WHAT I’M DOING

I HAVE NO IDEA 
WHAT I’M DOING



@brynary

Changing requirements?





http://blog.davidpeterson.co.uk/2011/04/why-do-agile-projects-fail-so-often.html


Putting conditional logic
around new code

reduces the chance of
breaking existing code

Developers take
care to minimise 

changes to 
existing code

Working on a copy of
some code means
you don’t have to

change the original

Conditional
logic increases

complexity

Conditional
logic is used

liberally
The code is full
of duplication

The code is
complex

It is difficult to
understand the
ramifications of
any changes

Developers do
not want to

introduce bugs

It is easy to
introduce a bug
when changing

code

VICIOUS
CIRCLE

START
HERE

AND

IF...

THEN...

http://blog.davidpeterson.co.uk/2011/04/why-do-agile-projects-fail-so-often.html




Fear



@brynary

• Automated testing

• Operational metrics

• Code review

• Static analysis

• Pair programming

Reducing Fear



“
@brynary

Hope is not a plan.



@brynary

Thank You.



@brynary

Questions?

https://codeclimate.com

https://codeclimate.com



