
Making SPA [Smarter!]! (?)
with GraphQL

Ken Rimple

Director, Training and Mentoring - Chariot Solutions

BarCamp Philly 2019

Graph Querying Language
• Data is fetched and updated via a graph-like hierarchy of objects

• Graph is defined by a schema of:

• Data types

• Queries

• Mutations

• Subscriptions

An alternative to REST APIs

• Shift from HTTP-based concepts to RPC-style

• Queries - read-only information from your graph

• Mutations - any modification to data in your graph

• Subscriptions - read-only queries, refreshed automatically from the
server

Language Benefits

• Well-defined schema

• Useful query and analysis tools for developers

• Query/mutate/subscribe to what you need

• Open metadata querying API

• Can be queried even from simple web service calls or curl

A simple GraphQL Schema
type Query {
 getQuizzes: [Quiz!]
 getQuiz(id: Int!): Quiz!
}

Queries provide data based  
on GraphQL Types

Types are defined based
on primitives such as 

Int, String, Boolean 
and other types

type Quiz {
 id: Int!
 name: String!
 description: String!
}

Query with GraphQL
import {client} from './apollo-graphql-client';
import gql from 'graphql-tag';

export function getQuizzesQuery() {
 return client.query({
 fetchPolicy: 'no-cache',
 query: gql`
 {
 getQuizzes {
 name
 }
 }`
 });
}

This is an Apollo client,
but most of the  

differences are in setup,
not in query syntax

The meat of the call
Is just GraphQL

query syntax

Mutations can Return Data
type Mutation {  
 voteOnCurrentQuestion(answer: String): ScoreData!
}

Mutations change your data,
and can also return results
like a query

type ScoreData { 
 correct: Boolean! 
 points: Int
}

Mutations with Complex Input
type Mutation {  
 login(credentials: SignInCredentials): String
}

Special input types
are only allowed to send
Parameter sets to a query
or mutation

input SignInCredentials { 
 userName: String! 
 password: String!
}

Sample Mutation Call
await client.mutate({
 mutation: gql`
 mutation answerQuestion($answer: QuestionAnswerInput!) {
 answerQuestion (input: $answer)
 }`,
 variables: {
 {
 answer: { key: incomingKey, quiz: incomingQuizId }
 }
 }
});

Actual schema mutation param
name and substitution variable

Map to variables incomingKey
and incomingQuizId from

JavaScript function params

Query signature includes
param name and type

GraphQL Subscriptions

GraphQL Subscriptions

• Act as server-side push messages

• Typically via WebSockets (but can be set up with polling in theory)

• Auto refresh themselves and notify the client when changed

• Typically require additional GraphQL endpoint and connection
configuration

• Newest feature of GraphQL (2018) and hence support is all over the map

Defining Subscriptions
type Subscription {
 nextMessage: GamePlayMessage
}

type GamePlayMessage {
 gameOver: Boolean
 leaderBoard: [LeaderBoardEntry!]!
}

type LeaderBoardEntry {
 playerId: String!
 nickName: String!
 score: Int!
}

Same semantics as
queries but they
are refreshed by

the server

(can have input parameters
and return responses)

Summary of Type Syntax Oddities
• Thing - A Thing. It is not required

• Thing! - A Thing. It is required

• [Thing] - An array of things. The array isn’t required, nor are the individual
entries (which is odd, but a GrapQL-ism)

• [Thing!] - An array of things. The array isn’t required, but if supplied,
each element must be a Thing and not null

• [Thing!]! - A required array of required Things

GraphQL Tools

Schema Mapping Tools

Code Generation - gql-gen

• https://github.com/dotansimha/graphql-code-generator

• Can generate TypeScript, Flow, Java, even integrate to client APIs such as
Apollo

• Can generate a raw Schema AST

• JavaScript functions via resolvers

• Data mappings via servers like Prisma (think data remoting)

https://github.com/dotansimha/graphql-code-generator

Popular GraphQL Distributions

• The official GraphQL reference implementation, graphql-js

• Apollo GraphQL

• Apollo GraphQL Yoga (https://github.com/prisma/yoga2)

• Facebook’s Relay (React-based API for GraphQL) -https://
facebook.github.io/relay/

https://github.com/prisma/yoga2
https://facebook.github.io/relay/
https://facebook.github.io/relay/

Lots of other GraphQL APIs
• Clients and servers exist for

• JavaScript

• Java

• Scala

• Python

• Ruby

• C#/.NET

• Go

• Groovy

• Erlang

• Clojure

• Elixr…

GraphiQL Playground

GraphQL Voyager

GraphQL Implementations
• Relay - Facebook’s JS RI

• GraphQL-js - a reference implementation

• Apollo - JavaScript clients and Servers, maintained by Prisma (our focus today)

• Lightweight express-GraphQL, HAPI-GraphQL projects

• Clients/Servers for many other languages / platforms including Java/Spring,
Scala, Clojure, Ruby, Python, PHP, Go, .NET, Elixir, Haskell and more

• Good research on JavaScript clients at https://medium.com/open-graphql/
exploring-different-graphql-clients-d1bc69de305f

https://medium.com/open-graphql/exploring-different-graphql-clients-d1bc69de305f
https://medium.com/open-graphql/exploring-different-graphql-clients-d1bc69de305f
https://medium.com/open-graphql/exploring-different-graphql-clients-d1bc69de305f

You can also post / curl a query…

• Some query tools provide curl examples to the clipboard… (I didn’t type
this in!)

curl 'http:localhost:8080/graphql' -H 'Accept-Encoding: gzip, deflate, br'
-H 'Content-Type: application/json' -H 'Accept: application/json' -H
'Connection: keep-alive' -H 'Origin: altair://-' -H 'Authorization: Bearer
eyJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJrZW5ueSIsImF1dGgiOlt7ImF1dGhvcml0eSI6IlJPT
EVfUExBWUVSIn1dLCJpYXQiOjE1NTYwMTQ1ODksImV4cCI6MTU1NjAxODE4OX0.tFbswqzU5gj
R3jwdlP7yYk21uUN8Lab2xm-orRZPKoQ' --data-binary '{"query":"query {\n \n
gameStatus {\n gameMode\n gameDescription\n currentQuestion {\n
text\n }\n questionScore {\n nickName\n score\n }\n
finalScore\n }\n}","variables":{}}' --compressed

Batteries Not Included
• Things you’ll need to wrestle with

• Security (CORS or Proxy, authentication, authorization)

• Client configuration for subscriptions / web sockets

• Generating client code for schema objects

• Monitoring (Apollo has a potential metrics engine available)

• You need to decide what level of granularity your API will support and you
need to implement each query/mutation/subscription, or delegate it to an API
for processing (like PRISMA)

Compared to JSON

GraphQL REST/JSON

Pros Cons Pros Cons

Query-based 

Fetch only what
you need 

Create types from
schema

 
Subscription
Model

APIs difficult for
newbies

Config is
somewhat
complex

Security is a

challenge and

can be non-trivial

Varied API quality

Ubiquitous

 
Easily tested 

Native to SPA
apps

 
Agnostic to API
tooling

No standard  
query API 
 
Metadata models  
also not a
standard

 
Subscriptions not
native to REST

Demonstrations

GraphQL Potential Uses
• Back-end of app with large semantic data structures

• Provide queryable API for customer with their choice of query tool and language

• App-defined ad-hoc or canned queries of content by graph of data

• Push-based messaging can be used on SPA clients

NOTE: GraphQL is not as big of a payoff if data model is trivial

Questions?

