

Graph Querying Language

e Data is fetched and updated via a graph-like hierarchy of objects
 Graph is defined by a schema of:

 Data types

e Queries

 Mutations

e Subscriptions

An alternative to REST APls

e Shift from HTTP-based concepts to RPC-style
* Queries - read-only information from your graph
 Mutations - any modification to data in your graph

* Subscriptions - read-only queries, refreshed automatically from the
server

Language Benefits

Well-defined schema

Useful query and analysis tools for developers
Query/mutate/subscribe to what you need
Open metadata querying AP|

Can be queried even from simple web service calls or curl

A simple GraphQL Schema

type Query A
getQuizzes: [Quiz!]

: . . Queries provide data based
u | u | —
\ getQuiz(id: Int!): Quiz! on GraphQL Types
type Quiz A
1d: Int! Types are f:l_efined based
name: String! P — on primitives such as

. . . Int, String, Boolean
. |))
\ description: String! and other types

Query with GraphQL

import {client} from './apollo-graphql-client’;
import ggql from 'graphql-tag’;

export function getQuizzesQuery() { This is aI;‘ Apollo C';eatv
return client.query({ ut most of the

: : : differences are in setup,
fetchPolicy: 'no-cache’, not in query Synt:x

query: gql
{ : The meat of the call
getQuizzes { —— Is just GraphQL
name query syntax
}
3
r);

Mutations can Return Data

type Mutation A
voteOnCurrentQuestion(answer: String): ScoreData!
}

Mutations change your data, type ScoreData {

d can also return results correct: Boolean!
a'n points: Int
like a query \

Mutations with Complex Input

type Mutation A
login(credentials: SignInCredentials): String

}

Special input types input SignInCredentials {
are only allowed to send userName: String!
Parameter sets to a query , password: String!

or mutation

Sample Mutation Call

Query signature includes

| | param name and type
awalt client.mutate({ /
mutation: gql

mutation answerQuestion($answer: QuestionAnswerInput!) {
answerQuestion (input: $answer)

F \ Actual schema mutation param

variables: { name and substitution variable

{

answer: { key: i1ncomingKey, quiz: incomingQuizId }

) Map to variables incomingKey
and incomingQuizld from
JavaScript function params

GraphQL Subscriptions

GraphQL Subscriptions

Act as server-side push messages
Typically via WebSockets (but can be set up with polling in theory)
Auto refresh themselves and notify the client when changed

Typically require additional GraphQL endpoint and connection
configuration

Newest feature of GraphQL (2018) and hence support is all over the map

Defining Subscriptions

type Subscription { 44— Same semantics as
nextMessage: GamePlayMessage queries but they
} are refreshed by
the server

type GamePlayMessage {
gameOver: Boolean (can have input parameters
leaderBoard: [LeaderBoardEntry!]! and return responses)

L

type LeaderBoardEntry 1
playerId: String!
nickName: String!
score: Int!

Summary of Type Syntax Oddities

 Thing - A Thing. It is not required
 Thing! - A Thing. It is required

 [Thing] - An array of things. The array isn’t required, nor are the individual
entries (which is odd, but a GrapQL-ism)

* [Thing!] - An array of things. The array isn’t required, but if supplied,
each element must be a Thing and not nuli

 [Thing!]! - A required array of required Things

GraphQL Tools

Schema Mapping Tools

Code Generation - gql-gen

https.//github.com/dotansimha/graphql-code-generator

Can generate TypeScript, Flow, Java, even integrate to client APIs such as
Apollo

Can generate a raw Schema AST
JavaScript functions via resolvers

Data mappings via servers like Prisma (think data remoting)

https://github.com/dotansimha/graphql-code-generator

Popular GraphQL Distributions

The official GraphQL reference implementation, graphql-js
Apollo GraphQL

Apollo GraphQL Yoga (https://github.com/prisma/yoga?)

Facebook’s Relay (React-based API for GraphQL) -https://
facebook.github.io/relay/

https://github.com/prisma/yoga2
https://facebook.github.io/relay/
https://facebook.github.io/relay/

Lots of other GraphQL APIs

* Clients and servers exist for o C#/.NET
e JavaScript e Go
e Java Groovy
e Scala e Erlang
* Python * Clojure

 Ruby e Elixr...

PRETTIFY HISTORY http://localhost:3000/graphql COPY CURL
Gr

v query { V1
getQuizzes { - ‘datati {
e v "getQuizzes": |
i
"name": "First Quiz"
¥
]
¥

¥

TTP HEADERS

GraphQL Voyager

® React App X reactjs - How X # Using thevie X id Using Media = X o) A Complete ¢ X o) flex-direction X m mini.css - Do X Q GraphQL Voy X * Web App Ma: X +

C O @ localhost:3000/voyage O * ¢ & i | ¢ a € i d @ AR ARIRA o S\Q

£ Type List

No Description

H gy .

MultipleChoiceQuestion

POSSIBLE TYPES id Int!

text String!

o options [!
No Description possible types |
luiz:questions

TrueFalseQuestion

. . i |
No Description > | id Int!
String!

No Description

FilllnBlankQuestion

id Int!

String!

Query

Sort by Alphabet Skip Relay Show leaf fields

¥ Powered by GraphQL Voyager

GraphQL Implementations

Relay - Facebook’s JS R

GraphQL-js - a reference implementation

Apollo - JavaScript clients and Servers, maintained by Prisma (our focus today)
Lightweight express-GraphQL, HAPI-GraphQL projects

Clients/Servers for many other languages / platforms including Java/Spring,
Scala, Clojure, Ruby, Python, PHP, Go, .NET, Elixir, Haskell and more

Good research on JavaScript clients at https://medium.com/open-graphqgl/
exploring-different-graphqgl-clients-d1bc69de305f

https://medium.com/open-graphql/exploring-different-graphql-clients-d1bc69de305f
https://medium.com/open-graphql/exploring-different-graphql-clients-d1bc69de305f
https://medium.com/open-graphql/exploring-different-graphql-clients-d1bc69de305f

You can also post / curl a query...

 Some query tools provide curl examples to the clipboard... (I didn’t type
this in!)

curl 'http:localhost:8080/graphgl' -H 'Accept-Encoding: gzip, deflate, br'
-H 'Content-Type: application/json' -H 'Accept: application/json' -H
'Connection: keep-alive' -H 'Origin: altair://-" -H '"Authorization: Bearer
eyJhbGci101JIUzIIN1J9.eyJzdWI101JrZW5ueSIsImF1dGgi01lt/ImFl1dGhveml®@eSI6I1JP
EVTfUEXBWUVSIN1dLCJpYXQiOjEINTYWMTQ1O0DksImVAcCI6MTUINJAXODE4OXO.tFbswgzU5¢g]
R3jwd1lP/yYk21uUNSLab2xm-orRZPKoQ' --data-binary '{"query":"query {\n \n
gameStatus {\n gameMode\n gameDescription\n currentQuestion {\n
text\n }\n guestionScore {\n nickName\n score\n P\ N
finalScore\n }\n}","variables":{}}' --compressed

Batteries Not Included

* Things you’ll need to wrestle with
o Security (CORS or Proxy, authentication, authorization)
e Client configuration for subscriptions / web sockets
* Generating client code for schema objects
 Monitoring (Apollo has a potential metrics engine available)

* You need to decide what level of granularity your API will support and you

need to implement each query/mutation/subscription, or delegate it to an API
for processing (like PRISMA)

Compared to JSON

GraphQL REST/JSON
Pros Cons Pros Cons
Query-based APls difficult for Ubiquitous No standard
newbies query AP
Fetch only what Easily tested
you need Config is Metadata models
somewhat Native to SPA also not a
Create types from complex apps standard
schema
Security is a Agnostic to API Subscriptions not
Subscription challenge and tooling native to REST

\Y[eYo =]

can be non-trivial

Varied API quality

Demonstrations

GraphQL Potential Uses

Back-end of app with large semantic data structures
Provide queryable API for customer with their choice of query tool and language
App-defined ad-hoc or canned queries of content by graph of data

Push-based messaging can be used on SPA clients

NOTE: GraphQL is not as big of a payoff if data model is trivial

Questions?

Don’t miss this Philly Cloud Computing Event!

IoT on AWS

Wednesday, November 6th — 9AM to SPM
Science History Museum, Philadelphia, PA

Cloud computing is a natural counterpart to smart devices: it's available anywhere, scalable to meet your needs, and
generally more reliable than self-hosted hardware. Amazon Web Services provides a start-to-finish loT solution: from
gathering data, to storing it securely, to analyzing it and providing the results to your users.

In this one-day event we’ll present a high-level overview of the steps involved in building an loT data pipeline. In short
sessions, our speakers will follow data from an loT device as it is ingested, analyzed, secured, and used to make
decisions. By the end of the day you will have a basic understanding of the complete pipeline.

Afternoon Hands-On Workshop:

There will be an optional afternoon workshop, limited to 50 participants, providing hands-on experience with
connecting loT devices and working with the data they produce.

CHARIE®T

SO U T I1ONS

