
A Philly Cloud Computing Event
IoT on AWS

Connecting to AWS IoT Core

By: Ken Rimple
 Director, Training/Mentoring
 Chariot Solutions

A Philly Cloud Computing Event
IoT on AWS

Outline What is IoT Core?

Setting up your Certificates

Connecting/Authenticating to IoT Core

Defining AWS IoT Policies and
Authorization Statements

What is AWS IoT Core?

● A suite of AWS services
○ Defines devices as "Things" in a registry
○ Configures security via X.509 certificates
○ Associates Things with security policies
○ Defines rules to integrate Things with AWS

services
○ Associates Things with shadows (state)
○ Provides a message broker with support for

MQTT, HTTP and MQTT over
WebSocket support

AWS IoT Core: Thing Registry

234523523452EEEFFFE

Authenticating with AWS IoT Core

What to secure? Identity associated with Notes

IoT Devices X.509 Certificates Certificate establishes identity

Web, Desktop Apps,
AWS CLI, Lambdas

IAM Users and Roles

Web, Desktop Apps Federated Identities (LDAP, etc) For Active Directory Users

Used by Mobile,
Mobile Web
Applications /
Amplify

Amazon Cognito Identities Cognito and AWS Amplify work
together to secure applications
via temporary scoped
credentials

How do Things communicate?

Fix: LoRaWAN - change Physical transport to

WIFI, LoRa, Cellular etc Keep it higher level

MQTTS - remove TLS - simplify! WIFI + MQTTS (mention the rest)

Thing AWS IoT Core
(MQTT Broker)

TCP/IP-based MQTTS over TLS

● Private Key
● Client Certificate
● Secured destination
● Secured traffic enroute

● AWS Certificate Authority
● Contains Server Certificate
● Verify Client via Certificate

Each IoT device must have its own key pair and certificate so that
compromised keys only affect a single device!

Key Pair/Cert Generation Strategies

● AWS has a one-click Cert Generation process
○ Makes generating a cert easy
○ AWS is the CA
○ But AWS created and knows your Private Key
○ Convenience

● Some devices can create keys and generate CSRs
○ You can then only keep the key on the device
○ AWS or third party can be the CA

● Alternatively you can manage the keys yourself and
associate them with the device and AWS IoT Core

ECCX08 Serial Number = 234523523452EEEFFFE

Hi there, in order to generate a new CSR for your board, we'll need the following information ...

Country Name (2 letter code) []:

State or Province Name (full name) []:

Locality Name (eg, city) []:

Organization Name (eg, company) []:

Organizational Unit Name (eg, section) []:

Common Name (e.g. server FQDN or YOUR name) [234523523452EEEFE]: 234523523452EEEFE

What slot would you like to use? (0 - 4) [0]: 0

Would you like to generate a new private key? (Y/n) [Y]:

Here's your CSR, enjoy!

-----BEGIN CERTIFICATE REQUEST-----

MIIBLDCB1AIBADByMQwwCgYDVQQGEwMFdXMxFTATBgNVBAgTDFBlbm5zeWx2YW5pYTEYMBYGA1UE

BxMPRm9ydCBXYXNoaW5ndG9uMRowGAYDVQQKExFDaGFyaW90IFNvbHV0aW9uczEVMBMGA1UEAxMM

UklNUExFREVWSUNFMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEHNr3AzJbv9S88rMlmZ3rpvPP

//XK4/zkORijdXfIt5Nh9q/7+IDaKs0YuOyrhweYhRkZE4WoLZRlXgLMY96tgKAAMAoGCCqGSM49

BAMCA0cAMEQCICmoB5YSFyDVi5nu5fLhBcBf5wzwfYBRp33Si5je5kkiAiAAkeXxvjDfIa/67Xon

uIdK7SXnUs9cVzaQ/Wzr0lDjbw==

-----END CERTIFICATE REQUEST-----

Creating a PK/CSR from the Thing

Creating Key Pair / CSR from OpenSSL
$ openssl genrsa -out private.key 2048

$ openssl req -new -key private.key -out csr.txt
...

Country Name (2 letter code) []:

State or Province Name (full name) []:

Locality Name (eg, city) []:

Organization Name (eg, company) []:

Organizational Unit Name (eg, section) []:

Common Name (e.g. server FQDN or YOUR name) [234523523452EEEFE]: 234523523452EEEFE

...

$ cat csr.txt
-----BEGIN CERTIFICATE REQUEST-----

MIICWjCCAUICAQAwFTETMBEGA1UEAwwKTVlERVZJQ0VJRDCCASIwDQYJKoZIhvcN...

kP+QuE9q3a3rzZoYAq/ync4vXJ17r77mDPcYc39/f6IXOIF0JAuXwb2ec3Vjey2W

aXMMJBAHE/DonBl9AV7YGHn+5Ks2PHEjHRWMyIF1afQOey4nEa7qItqN2qrJC37n

HCFd+C/UoraER/VZRCDm4tcT0MUrHW51xkJwsPyQU3QFDUR3AXfljog6eNPDpVKM

cX13T5sgiVYuPb6i0FDHes5NVfVJ48UpKOrfGtqq

-----END CERTIFICATE REQUEST-----

IoT Core
Creating a Certificate

based on a CSR

Use CSR to Create Certificate

(click on cert name)

Download the Certificate

Next, Assign an AWS IoT Policy

IoT Policy: a set of allowed operations assigned
various IoT Core Things

IoT
policy

What can IoT Policies do?
● Determine what Things are allowed to do in AWS

○ Connect to IoT Core via the Broker
○ Publish to topics
○ Receive messages / Subscribe to topics
○ Filter messages in topics

● Policies can be shared across many devices
● Policies can use variables to represent information

from the device via its certificate

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iot:Connect",
 "Resource": "arn:aws:iot:us-east-1:12341234214:client/${iot:Certificate.Subject.CommonName}"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish",
 "iot:Receive"
],
 "Resource": "arn:aws:iot:us-east-1:12341234214:topic/things/${iot:ClientId}/*"
 },
 {
 "Effect": "Allow",
 "Action": "iot:Subscribe",
 "Resource": "arn:aws:iot:us-east-1:12341234214:topicfilter/things/${iot:ClientId}/*"
 }
]
}

Policies are
managed via
the Secure
Iot Core menu

Now, attach the policy to the X.509 Certificate identifying the device

Now, Communicate!

● Attach your client certificate to the device
● Configure MQTT for TLS using the certificate
● Publish, Subscribe to MQTT Topics using Broker

References
AWS - Creating and activating a Device Certificate -

https://docs.aws.amazon.com/iot/latest/developerguide/create-device-certificate.html

IOT Core Security Model -

https://aws.amazon.com/blogs/iot/understanding-the-aws-iot-security-model/

AWS - AWS IoT Policy Actions -

https://docs.aws.amazon.com/iot/latest/developerguide/create-device-certificate.html

Arduino Tutorial - Connecting to AWS IoT Core with MKR-1010 WIFI and ECCX08

https://create.arduino.cc/projecthub/Arduino_Genuino/securely-connecting-an-arduino-mkr-wifi-1010-to-aws

-iot-core-a9f365

https://docs.aws.amazon.com/iot/latest/developerguide/create-device-certificate.html
https://aws.amazon.com/blogs/iot/understanding-the-aws-iot-security-model/
https://docs.aws.amazon.com/iot/latest/developerguide/create-device-certificate.html
https://create.arduino.cc/projecthub/Arduino_Genuino/securely-connecting-an-arduino-mkr-wifi-1010-to-aws-iot-core-a9f365
https://create.arduino.cc/projecthub/Arduino_Genuino/securely-connecting-an-arduino-mkr-wifi-1010-to-aws-iot-core-a9f365

Technology in the Service of Business.

Chariot Solutions is the Greater Philadelphia region’s top IT consulting firm specializing
in software development, systems integration, mobile application development and
training.

Our team includes many of the top software architects in the area, with deep technical
expertise, industry knowledge and a genuine passion for software development.

Visit us online at chariotsolutions.com.

TODO - what is PKI and WHY here?
● Not new
● OpenSSL, TLS, GPG - all use asymmetric (private/pblic key) pairs
● Leveraging to use for this
● Most people don't use client certs - this is what we do

Authenticating clients with X.509
Certificates

Device gatewayIoT Device - "Thing"
(example: Arduino)

MQTT
authenticate

via
certificate

X.509 private key and
certificate installed on IoT

Device

X.509 certificate
installed on AWS

IoT

View IoT Thing Details

Unique Amazon Resource Name
for your IoT Device. Important for
configuration, monitoring, etc.

Communicating to IoT Core
via IoT Device

● Load your key pair and configure network
authentication credentials, AWS IoT Core
endpoint for MQTT traffic, and IoT Client ID in
the Sketch

● Load networking stack
● Connect to Wifi, MQTT
● Send message via MQTT Client

 WiFiClient wifiClient;
BearSSLClient sslClient(wifiClient);
MqttClient mqttClient(sslClient);

unsigned long getTime() {
 return WiFi.getTime();
}

setup() {
 ArduinoBearSSL.onGetTime(getTime);
 if (!ECCX08.begin()) {
 Serial.println("No ECCX08 present!");
 while (1);
 }

 sslClient.setEccSlot(0, CERTIFICATE);
 mqttClient.setId(CLIENT_ID);
}

Configuring the Device

void connectWiFi() {
 while (WiFi.begin(WIFI_SSID, WIFI_PASS)
 != WL_CONNECTED) {
 // failed, retry
 Serial.print(".");
 delay(3000);
 }
}

void connectMQTT() {
 while (
 !mqttClient.connect(MQTT_BROKER, 8883)) {
 // failed, retry
 Serial.print(".");
 delay(5000);
 }
}

Connecting to WIFI, MQTT

void sendSensorData() {
...
 float humidity = ENV.readHumidity();
 float pressure = ENV.readPressure();
…
 JSONVar payload;
…
 payload["humidity"] = humidity;
 payload["pressure"] = pressure;
…

 mqttClient.beginMessage("things/" +
 clientId + "/environment");
 mqttClient.print(JSON.stringify(payload));
 mqttClient.endMessage();
}

Reading Sensors and Sending Data...

Creating and Using Certificates

Who creates PK / CSR? Approach Pros Cons

Device (via encryption chip) IoT Device creates CSR
based on internal private
key, CA signs key

● Cert uniquely
identifies device

● Amazon is a CA

● Need infrastructure /
process to set up
keys/CSR on
devices

AWS AWS Creates a KeyPair and
CSR in IoT Core

● Easily managed
from AWS

● Could mess up /
install key on more
than 1 device by
mistake

● Private key gets
passed around

 void loop() {
 if (WiFi.status() != WL_CONNECTED) {
 connectWiFi();
 }

 if (!mqttClient.connected()) {
 connectMQTT();
 }

 if (... past interval timing ...) {
 sendSensorData();
 }

 // sleep or delay here...
}

The loop… do this forever...

Advanced Users - managing your
own Certs with a CA

You CSR and Key created
outside of AWS, cert
installed on AWS and device

● Use existing key
management
infrastructure

● Movement of CSR,
PK, to AWS AND
Device

● You have to add
your CA to AWS

