
Accounts as a Service

Why we have 50+ AWS accounts, and 
why you should too

Keith Gregory
AWS Practice Lead, Chariot Solutions



50-person application-development consulting firm

Created this conference!

Offers training and developer workshops

AWS Consulting Partner

About Chariot Solutions



Why we did this

Reduce friction for workshop attendees

They might not have (or be able to use) an existing account

They could create an account, but this takes time

Support project teams



Why you might want to do the same

Allow developers/teams space to experiment

Ensure that they don’t harm others

Centralizes control, billing

Good practice for managing/promoting workloads



Approaches we considered

Single account, segregated by region/VPC/naming

Manually create/manage independent accounts

Manually create/manage accounts within organization

AWS Control Tower



Goals

Limit the likelihood of unexpected (big) bills

Identify who is responsible for creating what

Automate all the things!



Setting Up Your Organization



Control Tower

Amazon’s enterprise-scale multi-account solution 

Account Factory to create child accounts

Predefined “guardrails” based on AWS best practices

Accounts for Application and Audit (CloudTrail) logs

Too heavyweight?



AWS Organizations

Supports a hierarchy of accounts

Individual accounts are assigned to an “organizational unit,” which 
allows controls to applied to entire group

Accounts can be invited or created

Each child account needs a unique email address (“+name” FTW)

You will need to increase your account limit

Default limit is 4 accounts per organization

AWS won’t increase limits on new accounts



Organizing Accounts



Creating a child 
account

aws organizations create-account \

    --email sandbox+1@example.com

Can only be invoked from organization root 
account

Each child account must have a unique email 
address

Also creates OrganizationAccountAccessRole



User Management

Option 1: Create IAM users in each child account 

Easiest for users … as long as they only have one account

Option 2: Create IAM users in parent account

Users log-in and then assume role; better for multiple accounts

Option 3: AWS Single Sign-On

Uses an existing Active Directory server to manage users

AD User ⇒ AD Group ⇒ SSO Permission Set ⇒ IAM Role



ProTip: use multi-factor authentication

Goal: weak/leaked password != big bill

AWS supports several options

Virtual TOTP (Google Authenticator, Authy, …)

Physical TOTP (Gemalto)

Hardware key (Yubikey)



Organization Account Access Role

Administrator role in each child account

Created automatically when child is created inside organization

Must be manually created for invited accounts

Default name:  OrganizationAccountAccessRole

Damaging or deleting this role is a Bad Idea™



“Guardrails”



Service Control Policies

IAM-like policy that limits what a child account can do

If an SCP prevents an activity, it doesn’t matter if the account allows it — 
root user notwithstanding!

Does not replace IAM: accounts must define own policies

Can be applied to account or organizational unit



Allow versus Deny SCPs

Allow lets you do something, Deny prevents it

Example: Allow EC2

Gets tricky when multiple SCPs apply to an account

Example: Allow-All, Deny EC2

Allow applies only to accounts in specific organizational unit

Deny applies to all descendents, overrides Allow

Don’t apply Deny-All at root of organization!



Your First SCP

{

  "Version": "2012-10-17",

  "Statement": [

    {

      "Sid": "ProtectOrgAccess",

      "Effect": "Deny",

      "Action": [

        "iam:DeleteRole",

        "iam:DeleteRolePolicy",

        "iam:DetachRolePolicy",

        "iam:UpdateRole"

      ],

      "Resource": [

        "arn:aws:iam::*:role/OrganizationAccountAccessRole",

      ]

    }

  ]

}

The organization access role is your 
way to manage the account without an 
explicit login; don’t let it get damaged!



Limit the regions 
you allow 

{

  "Version": "2012-10-17",

  "Statement": [

    {

      "Sid": "RestrictRegion",

      "Effect": "Deny",

      "Action": [ "*" ],

      "Resource": [ "*" ],

      "Condition": {

        "StringNotEqualsIfExists": {

          "aws:RequestedRegion": [

            "us-east-1",

            "us-east-2",

            "us-west-1",

            "us-west-2"

          ]

        }

      }

    }

  ]

}

You can be more clever, and allow 
read-only access, but probably not 
worth it.



Limit expensive 
resources 

{

  "Version": "2012-10-17",

  "Statement": [

    {

      "Sid": "LimitEC2InstanceType",

      "Effect": "Deny",

      "Action": [

        "ec2:RunInstances"

      ],

      "Resource": [

        "arn:aws:ec2:*:*:instance/*"

      ],

      "Condition": {

        "StringNotLike": {

          "ec2:InstanceType": [

            "t2.*",

            "t3.*",

            "m5.large",

            "m5d.large"

          ]

        }

      }

    }

  ]

}

You’ll also need to do this for RDS, 
Redshift, Elasticsearch, and others.

Some services (eg, Private Certificate 
Authorities) should be disabled entirely.



Turning Your Users Loose



Have “The Talk” about security

Review AWS Shared Responsibility Model

Example: security groups

Long random passwords + multi-factor auth FTW

Access keys

“Keep them secret, keep them safe!”

Assumed roles (and SSO) make them less vulnerable

Don’t fire up random AWS Marketplace AMIs



Tag Resources

Start with a simple strategy

CreatedBy: username of person who created resource

DeleteAfter: how long they expect to need it

Implement a Lambda to look for missing tags

Send an SNS notification, or just delete the resource

This is actually a complex task: multi-service, multi-region, 
multi-account



Cost Explorer is your new BFF



Along with AWS Budgets



And CloudTrail + Search Engine



If You’re Running a Workshop



Getting Ready 

Identify the services used by the workshop and craft 
an Explicit-Allow SCP that allows all of them

Test-run the workshop to ensure you’ve caught them all!

Create a “workshop” IAM user for each account, with 
login profile and randomly-generated password

Attach a “deny all” SCP until the day of the workshop



Wrapping-up

Attach an SCP that prevents creating new resources

Run a script to delete all resources for the accounts

First thing to delete: user access keys, login profiles, non-standard 
users

There will be some cases where manual intervention is needed

Attach a “deny all” SCP until next time



ProTip: Excel is Your Friend

Keep track of all of your accounts in one sheet

Randomly generate passwords

=TRUNC(1000000000*RAND())

No, this isn’t secure, but it’s a limited-duration vulnerability

Use additional sheets to produce CLI commands



Really, Cost Explorer is your BFF



Questions?



About Me
AWS Practice Lead at Chariot Solutions

Programming since 1977,
professionally since 1984,
on AWS since 2008

https://www.kdgregory.com/

https://github.com/kdgregory/

@ChariotKGregory

https://www.kdgregory.com/
https://github.com/kdgregory/




Technology in the Service of Business.

Chariot Solutions is the Greater Philadelphia region’s top IT consulting firm specializing 
in software development, systems integration, mobile application development and 
training. 

Our team includes many of the top software architects in the area, with deep technical 
expertise, industry knowledge and a genuine passion for software development.

Visit us online at chariotsolutions.com.


