Serverless, Schmerverless!

One developer’s search for knowledge in the hazy world of Serverless software
development

About Me

e Ken Rimple
= Director of Training and Mentoring, Chariot Solutions
= Present about emerging / emergent tech topics

= Mentor consultants, clients in a wide array of technologies

= Focus on Cloud, container-based technologies and Single Page
Applications in React, Angular, Vue

What we won't discuss

Lambda Layers
Production tuning
Complex configuration
API| Gateway 2.0

CDK or Terraform

Websockets or advanced configurations

.2

Serverless Software Development is...

Difficult to master

Not well-documented

A super leaky abstraction

Fraught with complex choices (CORS anyone?)

So why do it?

Figure 1. available in the Slack channels as :slam: courtesy Martin Snyder
e Move quickly and get stuff done?

e Avoid paying for idle servers

e Avoid managing server OSes, application servers

e Lower costs than legacy application?

.2

Some Serverless options

Manually, via CloudFormation or Terraform
Using AWS Serverless SAM
Using the Serverless Framework

Using a stronger abstraction, such as Architect

K

.3

Serverless, or Schmerverless?

EC2 Apps

Virtualized Servers

Container Apps

Distributed, multi-node
platform

Serverless Apps

Functions in the Cloud

Easy to host existing
servers

Run the same platform on
desktops, production

Runtime managed by AWS,
harder to test locally

Can be costly to host
(overprovisioning, paying
for idle time)

Can scale quickly up/down
based on demand (Fargate)

Only pay based on usage

Can be cloud agnostic

Can be cloud agnostic

Are tightly locked to AWS

Lambda Functions in AWS

AWS Lambdas

Lambdas functions have a common signature:

| function handler(event, context) {
// process input in event, refer to context
// then...
return {

body: 'OK'

1
2
3
4
5 statusCode: 200,
6
7 }i

8

g

e Lambdas are deployed on AWS and have an ARN
e They access “Serverless” services or even exposed servers like RDS

e AWS Lambda runtimes span all major programming languages

(e . I I
Q Serverless doesn’t mean no servers. It just means ‘not your servers!

Lambda'’s division of labor

You AWS

Deploy Lambda code Launch and prune Lambda runtimes
Define IAM Roles, Permissions Protect based on Roles Permissions
Map Lambdas to events including API Execute the Lambdas when events are
Gateway URLs, AWS infrastructure triggered

Define OAuth, Cognito auth Protect via the configured authorization
Allocate memory to the Lambda, set a Allocates up to 1 CPU per executing
timeout, potentially keep warmed Lambda

@, Lambda services are tuned by tweaking memory allocation, concurrent

instances, and setting warm-up settings
3.7

AWS Lambda Functions can...

e Respond to HTTP endpoints via APl Gateway or Application Load Balancer
e Act as microservices to replace monolithic APIs
e Respond to events in AWS

= Addition/removal of a file to S3

= Transform incoming data in Kinesis, other systems

= Execute on a trigger in an Amazon database row

= Respond to a GraphQL query

@ Lambdas exist to execute event-driven logic and communicate with
Serverless APIs

3.8

Serverless services...

A Serverless Service is...

Billed for only when consumed

Not truly "serverless”

Minimally configurable

Usually accessed from the Lambda via the AWS SDK

Manually building Lambda-based Microservices

;j;j

CloudFormation is a very verbose and tedious API

But you need to learn it if you work with serverless AWS

It defines resources, wires them together

e Deployments result in Stacks

m Stacks can be queried, updated, dropped

= Stacks can accept input parameters, and output values

= Stacks can contain just about any AWS service

0 CF is the basis of SAM and is used by Serverless

A CloudFormation Snippet

Sample listing
APIGateway: "
Type: "AWS: :ApiGateway: :RestApi" t’
Properties:

Name: !Sub "S${AWS::StackName}" G’
Description: "Endpoint”
EndpointConfiguration:

Types : ["REGIONAL"]

1 Each configured resource has an identifer (ARN)
2 Types are well-defined and used to build infrastructure

3 CloudFormation has functions and substitution variables

o This goes on for 579 lines in Two S3 Buckets, A Lambda, and
infrastructure

o
To build a Lambda HTTP service, create

Pure CloudFormation Pros/Cons

Pro

Mature, used by thousands of applications

Con

Verbose, confusing, takes a long time to
learn and master

Complete control over options you can set

No significant logic beyond some
conditional configuration

Inputs/Outputs and Exports provide
linkages between CF Templates

Manual changes create drift, which can
cause stack updates to fail

Can deploy the same stack over and over
with different parameters

Tooling is not great, and can lag behind
types available

3.

14

Serverless development platforms

CHA

S O 8.15

My criteria for a framework or tooling around
Serverless

It should provide an improvement to provisioning over pure CloudFormation

It should be well documented

It should have wide adoption

It should have great examples

It should not increase cognitive load

A No one tool has all of these criteria covered!

Ken's "things to learn” for success in Serverless
regardless of tool

o AWS CLI configuration including credential management
e Understanding AWS Accounts and the AWS Console
e Basic understanding of IAM Users, Roles, Policies, Permissions

e Basic CloudFormation skills - including how to create objects, and use
functions like IGetAtt, |Ref, ISub, etc.

e Understanding about linking CF stacks together with Inputs, Outputs, Exports

e Basic Lambda execution in your language, as well as managing dependencies,
how it logs output

e Enough API Gateway to hurt yourself including turning on CloudWatch logging
and X-Ray

e Enough time for the project team to learn all of this before assuming heavy
project deadlines

3.17

Serverless development platforms for this talk

e AWS Serverless Application Model (SAM)

e The Serverless Framework

e Architect

e There are other options out there, we've only got time for 3

AWS Serverless Application Model

CHA

S O B.19

AWS Serverless SAM

e The Serverless Application Model framework from AWS, provides:
= Helpful Types to deal with boilerplate config
= ACLItool (aws-sam-cl1i)
= A deployment command

= Both local and cloud invocation options

.20

Your cognitive load is a bit reduced

e Lambda deployment is automated (guided deploy sets up S3 bucket, stores
infoin serverless.toml)

e Helper types for Lambdas, APl Gateway, events, others
e When defining a Serverless Lambda, SAM:
= Creates a shared IAM Role for the project
= Grants execute authority to the Role
= Exposes the Lambda based on the event you attach (REST API, AWS event)

= Creates an API Gateway if you mount a REST API

@ Serverless will save you many, many lines of CloudFormation code,
but you need to understand what its doing to debug it... So head to
CloudFormation in the Console

3.21

Review SAM App

CHA

SOs

Ken's SAM tips

e Separate your slow-moving infrastructure from applications
e Avoid explicit resource naming where possible
e If naming, make sure to involve your current stage name (dev, ga, production)

e Link stacks together via exported resources from other CloudFormation
templates

e SAM sometimes does not detect stack changes, you may need to force
deployments

e Some of the Serverless transform Types lack significant documentation or
examples are hard to find

@ Recommendation: delete .aws-sam and rebuild during a deploy to the
cloud to protect yourself

3.23

Ken's SAM pros/cons

Pro

AWS: :Serverless: :xXxx types can save
time and provide defaults for Lambdas,
API| Gateway, a simple DynamoDB table,
nested applications

Con

You are still mostly rolling out
CloudFormation templates

No new syntax to learn - it's just
CloudFormation

Local development is challenging, though
possible to a degree

Tooling is a bit better than standard aws
cfn commands, allows viewing of logs,
invoking, etc.

Many features are bewildering to learn at
first without a lot of research (API
Gateways)

3.

24

The Serverless Framework

CHA

SOs

The Serverless Framework

e Transforms a cross-cloud serverless.yml YAML file’s syntax into native
Cloud platforms

e Provides a cross-cloud app monitoring platform for free, commercial options
for enterprise / team integrations (https://serverless.com/pricing/)

e On AWS:
= CloudFormation is used for the transforms for that platform
= You can import and use straight CloudFormation YAML or JSON
= The Serverless YAML file has its own DSL

= |t's not quite a leakless abstraction as each cloud has different mappings

0 Serverless does not use the SAM transform classes

3.26

Serverless Framework Example Review

CHA

S O 8.27

Plugins make things interesting

e Modify the build process and extend the platform

serverless-plugin-offline - emulates lambda and APl Gateway
locally

serverless-plugin-tracing - enables deep X-Ray tracing with
minimal effort

serverless-finch - takes a SPA’s distribution directory and pushes it to
an S3 bucket, hosts it!

serverless-python-requirements - uses the requirements. txt

file to bundle Python dependencies

Q See https.//serverless.com/plugins/ for more details.

3.28

Ken's Serverless tips/comments

e The syntax is just, well, different
e Almost better to learn SAM first, do a project in it, THEN use Serverless
e CORS is bewildering here just like in SAM, but a bit worse

e There are magic components (a pre-mounted Api Gateway) you may need to
override

e Serverless CLIis serverless, shortenedto sls

e Serverless may not detect changes in your stack. Drop it and re-add it, or use -
-force

e can't remove a stack if you have syntax errors in the serverless.yml file

e See the generated CloudFormation with s1s print - this can help you a lot

3.29

Serverless Pros/Cons

Pro

Con

Cross-cloud concepts means learning one
provisioning tool

The DSL, Serverless’s own magic variables
add cognitive load to CloudFormation

You can still use CloudFormation

Tooling hard to find

Serverless plugins are a great feature

Be aware of plugin rot and pick the highly
used ones

The REST-based API Gateway is verbose
and confusing

APIGateway V2 support is not baked yet
but will cut down complexity

@ Chariots Drew DeCarme used Serverless on his application deploying to

CloudFlare

3.

30

Architect

CHA

SOzs

So, what'’s wrong here so far?

e A huge amount of cognitive load to just get started
e The platform itself is very low-level

e Leakier than Niagara Falls for the developer

0 | called this "Serverless, Schmerverless” because of how much it took
to learn enough to be dangerous

3.32

We need less complex tooling

Hide all of the complexity you can

Give me something | can do without knowing how it is being done

Make me only care about stuff | need

Do one thing and do it well

3.33

Architect is

e A strong abstraction over Lambdas and Serverless
e Provides easy access to

= Lambdas

= Messaging with SNS and SQS

= Data with DynamoDB tables

3.34

Architect is not

e A general-purpose serverless platform
e The first thing you run to to create AWS event integrations
e Easy to integrate with existing data sources in RDS

= You can use JS-based macros to access AWS::Serverless::Cloudformation
instance

= This should allow you to configure resources otherwise not easily available

3.35

Architect Example

CHA

SOzs

You like this?

e Tomorrow at 1:30PM we booked Brian LeRoux for a full-on talk on Architect

= | ess, but Better, Serverless with OpendS Architect

3.37

The land that time did not permit...

Stuff on the cutting room floor follows. Hope it helps!

.
General Lambda notes

DRY is hard in Lambda

e Use Lambda Layers for shared functions across Lambdas
e Or,import code into Lambdas, but be aware you will increase its size
e If you add libraries

= Add the smallest ones and least pieces

= Use a tree shaker, exclude portions, etc

4.3

Lambdas and Latency

e Avoid

Too many external resources or libraries
Too much memory - filter on AWS, not on the client!

Too much time - your function can time out if it runs away and cost you
money if repeatedly executed

Too much code - if you have complex logic and tiers to your application,
consider a Docker container and an actual app stack

Use CloudWatch to review your memory usage

After each execution it prints out the usage details

REPORT RequestId: f1a419f8-b21c-4ecd-a503-51397d141bal

Duration: 176.12 ms
Billed Duration: 200 ms
Memory Size: 1152 MB

Max Memory Used: 90 MB
Init Duration: 411.44 ms

e Tune your memory or adjust your code based on how long / how much it
consumes

.5

Debugging / Tracing

e You will spend a lot of time staring at useless stack traces until you learn

= API Gateway swallows mis-use of responses and requests and bad
mappings

= Turn on X-Ray tracing in APl Gateway stages to help find errors

= Use logging as much as possible in your code to help you figure out what's
going on when deployed

» Testlocally (sam invoke local) and use your local client stack to get
some useful errors

= Unit test to get your logic debugged before finding out you wrote code that
has logic errors

e You will not completely get away from AWS-native concepts even with
Architect

4.6

Exception handling

e Your errors may be swallowed by the API Gateway in a REST API

e Turn on logging on API Gateway (View your deployed stage, and add logging)

e You can define custom responses for various errors

Final Thoughts

e SAM is the most long-form and native AWS platform

e Serverless is powerful and great for quick attachment of Lambdas to AWS
events

e Arc is arapid development tool for AWS and might be the best for quick apps
without lots of external dependencies

o | will hang out in the room for Q&A after the talk

TL,DR

SAM and Serverless are good ways to develop AWS-based serverless
applications

You are going to have to learn and keep track of a LOT of things

The cognitive load of managing serverless platforms could outweigh the
benefits for the team

The main benefit is the lack of spend when the app is ‘idle’

The main drawback is that the platforms are very immature

You will tie yourself to AWS deeply, and have challenges with local
development compared to Docker-based container development

