
1

Serverless,
Schmerverless!

Philly Area Cloud & DevOps Meetup Edition
Ken Rimple, Chariot Solutions

July 29, 2020

2

About me...
• Director of Training and

Mentoring, Chariot Solutions

• Present about emerging /
emergent tech topics

• Mentor consultants, clients in a
wide array of technologies

• My teams develop SPA apps
against AWS with ECS/Fargate

3

My view (personal, NOT of Chariot Solutions):

Lambda-based application stacks do not yet
provide me enough developer velocity and
productivity compared to container-based ones

4

The “delight a developer” test…
• I just deploy functions?
• The functions can access all of

AWS?
• COOL!

Lambda all the things!!!

In practice…

6

Too many concerns!
• For a single web-facing Lambda, we need:

• The Lambda function itself
• Infrastructure to expose if front-facing
• A good naming mechanism for inside callers
• An IAM Role with Policies that work for the

Lambda
• Settings for the Lambda for vCPU and

Memory to tune its size
• To figure out how to inject shared

resources, and when to attach/disconnect
them

• Hopefully a CloudFormation, Terraform or
ADK script to deploy the Lambda again! I just want my function!

7

Metadata/
Settings/

Boilerplate

fn() {
step A
step B

}

Metadata/Settings/Boilerplate

fnA() {
step A

}

Metadata/Settings/Boilerplate

fnB() {
step B

}

Metadata/
Settings/

Boilerplate

fn() {
call fnA()
call fnB()

}

Refactor

Lambda Refactoring Expands
Metadata footprint

IAM Policies

IAM Policies

“invoke”

IAM Policies IAM Policies

8

We’ve seen all of this before
• Java Enterprise Edition

• Deployment Descriptor: started as complex XML-configured objects
that tuned # of instances, how long to keep, etc.

• Spring defined the simple container (just an object that
holds “beans”) and let them all share the same thread pool
• Separate config from code, simplified to annotations and DSL
• Abstracted away difficult services and shared across code easily

• Many Java EE projects converted to Spring for ease of
development and refactoring
• Ruby on Rails and Convention over Configuration…

More Lambdas = More Infrastructure

10

New
technology

appears

Rush to
add

features,
capabilities

Rush to
learn by

early
adopters

Tooling
matures,
platform
stabilizes

It's boring,
let's do
another

one!

The never-ending story…

You are
here

11

Additional Lambda App challenges…
• Is there an “application” here? (code organization)
• How big is your Lambda? Libraries included…
• Connection pooling (temporary problem)
• Tuning – your app is now diffuse across many deployed

functions, and tuning just got harder
• Monitoring – need external tools – a whole universe of

vendors are willing to assist here for the right price

12

Solving infrastructure problems too
much… instead of building features
• Managing fine-grained Lambda CloudFormation

stacks
• Sizing right and related cost concerns
• Pinning Lambdas for performance?
• Tooling is a marketplace, not native features
• You are deeply tied to AWS (or Azure or whatever

you use)

13

Use Containers instead…
• We are all used to running servers
• We can keep all related code within the same container

boundary
• We have one thing to tune per container
• We can monitor/debug the whole container
• We can scale at the container level
• We can use libraries to share code between containers

14

Containers are Portable
• Run anywhere Docker runs
• In your local machine
• In company hardware
• On cloud platforms

• With proper abstraction AWS services can be
replaced later with others (queues, databases,
caches)

15

Container runtimes on AWS
• Elastic Container Service (ECS)
• Elastic Kubernetes Service (EKS)
• Elastic Container Registry (ECR)
• The Fargate runtime – Serverless runtime for ECS or

EKS
• Push the serverless infrastructure below your concern
• Pay as you go for only what you spend
• Tune per container, not per function

16

Not as easy as it sounds
• You still have to stand up the developer services

you need…
• But developers can share things (like S3 buckets,

Cognito, SES, etc.) to save some money
• And developers can be productive immediately

without solving all problems to run in the cloud
right away!

Experiences on two projects…

18

NodeJs & React Application Stack

Amazon Cognito

Amazon RDS

Elastic
Container
Registry

Elastic Load
Balancer

Elastic Container Service

NodeJS
App & React

Front-End

Flyway DB
Migrations

Image

NodeJS
Server ECS

Task
NodeJS

Server Containers
(scale as needed

via Fargate)

AWS Fargate
Launches

Containers…

Fetch
images

Tools used: AWS CodeBuild/CodeDeploy, CloudFormation, ”CreateReactApp”, “React”, “Storybook”,
NodeJS w/Express, Hosted Cognito for Authentication, Postgres in RDS, Docker for
running Flyway migrations and Postgres locally

19

Spring & Angular Application Stack

Amazon Cognito

Amazon RDS

Elastic
Container
Registry

Elastic
Load

Balancer

Elastic Container Service

Spring Boot
REST

App Server

Flyway DB
Migrations

Image

NodeJS
Server ECS

Task
NodeJS

Server Containers
(scale as needed

via Fargate)

AWS Fargate
Launches

Containers…

Fetch
images

Tools used: AWS CodeBuild/CodeDeploy, CloudFormation, Angular, Storybook,
Spring Boot, Hosted Cognito for Authentication, Postgres in RDS Aurora Serverless,
Docker for running Flyway migrations and Postgres locally, Cypress for
running web tests within CodeBuild

Amazon
CloudFront

S3 Bucket
With Compiled
Angular App

20

Benefit: Developer productivity
• Developers can use their native tools
• They can stand up application servers locally or in

Docker
• They can run databases and other services via Docker

for a zero install developer setup
• They don’t need to use AWS (except for some cases

such as authentication with Cognito)
• They don’t need to pay for infrastructure just to run the

application

21

Benefit: Iterate on additional projects
more easily
• IF you build a body of CloudFormation scripts and

project templates
• Learn to use CodeBuild for building Docker images to

deploy to ECR
• ECR, ECS w/Fargate, CloudFront/S3 hosting separates

front/back ends nicely
• Swap in whatever web/app platform you want without

worrying about the whole stack falling apart

22

It’s still hard
• CloudFormation, troubleshooting cloud problems

must be endured, not enjoyed
• Wrestling networking challenges can be trying and

difficult
• But the whole team does not need to play
• Focus on infrastructure infrequently, feature

development frequently!

Questions?

24

Thank you!
• More videos/sessions (incl. ETE 2020) at

youtube.com/chariotsolutions

• Interested in training/mentoring in AWS?

https://chariotsolutions.com/aws-training

https://www.youtube.com/chariotsolutions
https://chariotsolutions.com/aws-training

25

Container App Refactoring does not
change metadata footprint
• Only need additional policies for new AWS features
• Policies defined at the app / container level
• Can refactor at will
• A single set of metadata for the app

