
Eight Weeks to Production with a Cloud-Eight Weeks to Production with a Cloud-
Native Web AppNative Web App

1

Who am I: Ken Rimple (@techcast)Who am I: Ken Rimple (@techcast)

Started at Chariot in May 2007
Director of Training/Mentoring Services
Host of the Chariot TechCast and TechChat Tuesdays podcasts
Present on emerging technologies at conferences
Work on projects in AWS w/Angular, React, Spring,
Node/Express, etc.

2 . 1

Chariot’s SpecialtiesChariot’s Specialties

Application Architecture
Front-end SPA and Mobile dev
Data Engineering Services
Cloud dev services

2 . 2

Chariot created and hosts Philadelphia’s
Emerging Technologies for the Enterprise
conference, and we sponsor user groups,
conferences

í

2 . 3

About this talkAbout this talk

3 . 1

GoalsGoals

Review the major tasks in developing a project to deploy to AWS
Leverage containers for local development
Deploy containers via ECS to AWS
Discuss project and AWS con�guration tasks

3 . 2

AssumptionsAssumptions

User Experience / basic wireframes have been created
Agile project w/strong issue tracking
Documentation committed to the project as markup code
First week: beginning of development effort

3 . 3

ProvisosProvisos

Your project is not my project
Likely the timeline is not going to �t all circumstances
This assumes a green�eld application
The scope of this example is small
"Production" means project is deployed in production and begins
�nal testing

Migrations have additional considerations and
take more time than expected!q

3 . 4

The Proposed PatternsThe Proposed Patterns

Docker and/or local app servers for local development
AWS deployment via con�guration-as-code
Not focusing on Lambda application functions for this
presentation
Secure application via Cognito and app roles, JWT

3 . 5

Team Required SkillsTeam Required Skills

4 . 1

Front-end ExpertiseFront-end Expertise

Expertise in a SPA framework such as Angular, React, or Vue
Expertise in CSS and a CSS framework such as Bootstrap,
Material Design, or able to create / extend a vanilla template
Comfort with con�guring libraries with npm and package.json
Calling web services via framework API or library (Axios, Fetch,
etc)
Session management via JWT Tokens and the AWS Amplify SDK

4 . 2

Application Server DevelopmentApplication Server Development

Expertise in building application servers with REST endpoints in
a language / platform of choice

Java/Spring Boot
Node/Express
Python/Django

Ensure support for your language version via a
Docker container before you begin using it…
CodeBuild makes this a bit more complex.
(CodeBuild language support)

í

4 . 3

DockerDocker

Use docker-compose.yml to develop a stack
Understanding of Docker hostnames and networks, port access
and forwarding
Use of .env �les and environment variables for settings
Comfort using Dockerfile to build custom docker images

Amazon’s Elastic Container Service is Docker
in the cloud, so skills in Docker get translated
to production success

í

4 . 4

AWS SkillsAWS Skills

AWS CLI con�guration basic, use pro�les
Use CloudFormation, Terraform or CDK to set up your resources
Con�guring IAM Roles/Policies
Distributing web applications via CloudFront and S3
Deploying application servers with ECS
Set up CI/CD via AWS CodeBuild/CodePipeline
Con�guring security with Cognito
Con�gure app secrets via Secrets Manager

Get certi�ed! It helps give you an overall view
of AWS servicesí

4 . 5

Division of LaborDivision of Labor

Assuming a 4 person team:
One team member focuses primarily on AWS infrastructure
Two developers focus on application features
One team member focuses on integrations w/AWS APIs

This example assumes one engineer will take
the job of scrum master and assumes the
tasks are light enough to be done within eight
weeks of development

q

5

TimelineTimeline

Pre-project inception planning
Sprint 1 - Initial AWS scripts, Docker con�g, application setup,
feature dev
Sprint 2 - Build out AWS developer resources (S3 buckets, etc),
Data model, feature dev
Sprint 3 - Production install on AWS, establish CI pipeline, feature
dev
Sprint 4 - Platform guide, production delivery, complete features,
build web tests

Deploy to AWS as soon as possible! App
Developers will become comfortable in Docker
and want to stay within it.

q

6

Week 0! Project Inception and Pre-LaunchWeek 0! Project Inception and Pre-Launch
MeetingMeeting

Set up Git Repository, JIRA/issue tracker before 1st sprint
Set up AWS Accounts
Follow organization preferences (language, frameworks,
database type, con�guration - CloudFormation -vs- Terraform is
a common debate, etc.)
Determine any security limitations or concerns
Identify integration points with other systems

Identify all issues as early as possible and
place them in your issue tracker.�

7

8 . 1

Set up development resources ASAP!Set up development resources ASAP!

Con�gure the development project skeleton on day 1
Nothing needs to be perfect
Nothing needs to be integrated
Security and UI design not yet necessary
Create a simple "Hello World" skeleton with a modest UI

This frees up the rest of the sprint for roughing
out the UI, backend, initial meetings with the
clients and sprint planning.

q

8 . 2

Pro Tip: Run your SPA from your desktopPro Tip: Run your SPA from your desktop

Run your web front-end locally, not in Docker
You can debug it locally
You can add proxy servers for backends
You can have it automatically reload when changes are made
with hot redeploys
You can use local tooling
You’ll deploy on S3 in AWS anyway

8 . 3

De�ne UI layout and componentsDe�ne UI layout and components

Pick your CSS framework and stick with it for the project
Roll out your initial UI for the SPA without tuning the
colors/fonts/layout
Key features to focus on up front

Navigations and routes (stub out views at �rst)
Header and Footer
Sign in / out buttons and fake UI for same

Twitter Bootstrap is popular for a reason. It
allows for lots of customization and tailoring,
while remaining very accessible to beginners.

í

8 . 4

SPA infrastructure setupSPA infrastructure setup

Http API such as Axios, Angular HTTP, Fetch in this sprint
Build a simple API calling layer in your app
Use site-relative URIs ('/api') for the backend so you can deploy
this anywhere w/o changing the endpoint

Avoids the ugliness of CORS settings
SPA dev tools have proxy services for this
Later you can expose /api via a CloudFront Origin

8 . 5

Database con�guration on Docker duringDatabase con�guration on Docker during
developmentdevelopment

Running relational databases for your developers on AWS can be
cost-prohibitive over time
Run a Docker container for your developer databases
DynamoDb also has a Docker container

Use environment variables for database
connection settingsí

8 . 6

Flyway: a schema management toolFlyway: a schema management tool

Manages relational database schemas
Run from a Docker container
Using docker-compose it will synchronize your schema when
you bring up the stack

Run Flyway docker container from CodeBuild
to execute on RDSí

8 . 7

Begin AWS Infrastructure build-out andBegin AWS Infrastructure build-out and
developer con�gdeveloper con�g

Con�gure w/AWS CDK, AWS CloudFormation or Terraform
Version your infrastructure scripts
Use , or templates
Break your con�guration up into several chunks

Amazon’s CDK CloudFormation Terraform

Experiment in the console, but then use code
to deploy for developers / production.í

8 . 8

Managing AWS credentialsManaging AWS credentials

There are three different "personalities":
Provisioner
Developer
Production Deployment

Grant permissions to IAM Roles, assign those
roles to the personalities that need themí

8 . 9

Consider abstractions for some servicesConsider abstractions for some services

If you don’t have an implemented service for features in your UI
yet, make up a fake response and keep moving!
Stub out AWS API calls (let them pass for now), to get customer
feedback
Then go back and begin wiring in AWS services

8 . 10

End of Sprint ArtifactsEnd of Sprint Artifacts

Initial Git project and GitHub shared repo
Documentation home folder
Basic project layout
Simple web front-end calling an app server
AWS accounts and development sandbox
Database via Docker and database schema migration strategy
Established developer client tooling (what IDE, tools, etc)

8 . 11

9 . 1

Sprint 2 ActivitiesSprint 2 Activities

Begin to work on tasks in parallel, for example:
Application security con�guration via Cognito, JWT
Iterate on AWS services
Docker app should be able to access AWS services
Application development underway

9 . 2

Identifying AWS ServicesIdentifying AWS Services

Some AWS services reveal themselves up front
A customer may need to upload large �les (S3 or SFTP)
Users may need email: (Simple Email Service)
Almost everything needs a database…

Some are less obvious, such as monitoring and
logging. You want to identify the �rst services
you need to integrate.

q

9 . 3

AWS Database optionsAWS Database options

This is a good time to provision AWS-hosted databases
Use RDS to host most common databases
Consider Amazon Serverless Aurora to keep costs down

Great for mostly low-frequency tra�c with spikes in usage
Good for development databases

9 . 4

Con�gure App Security with CognitoCon�gure App Security with Cognito

Using the provisioning tool, add:
An AWS Cognito User Pool
An AWS Cognito User Pool Web Client

AWS Amplify provides an Auth SDK for connecting web and
mobile applications to Cognito
Make sure to verify your JWT token sent to the app server really
came from your Cognito server (see)JWT claims and Cognito

User Pools provide authentication, and Identity
Pools provide AWS IAM permissions for AWS
resources.

q

9 . 5

More feature elaborationsMore feature elaborations

You will need to build up UI elements, database schema
elements and services
Now this is easier, given you have:

a database and migrations con�gured
an application server
a web application
a navigational mechanism

9 . 6

Major deliverables for Sprint 2Major deliverables for Sprint 2

Developers using AWS services
Working stack on AWS including security, database
Improved UI via the CSS framework
More complete navigation
Integration w/Cognito for security
Delivered the �rst major feature
Elaboration of the second feature

You will gain velocity after this sprintq

9 . 7

10 . 1

Begin customer deployment guide, featureBegin customer deployment guide, feature
developmentdevelopment

By sprint-end:
Feature 2 should be complete
Features 3 and 4 should be in progress or near completion
Platform Installation guide, scripts, should be drafted for �nal
production installation
The application should be deployed in both development and
production AWS accounts

Finish the guide now, save stress at the end of
the projectí

10 . 2

Developers: Just keep moving!Developers: Just keep moving!

Nothing new in the development process
One of the other two developers could join in on feature
development
Any issues or updates to earlier delivered features can be
performed here

10 . 3

Set up a CI environmentSet up a CI environment

Setting up CI in this sprint prepares for handoff to production
team
Two of the options:

CircleCI has support for AWS via Terraform
AWS CodeBuild/CodePipeline/CodeCommit/CodeDeploy
runs natively on the AWS platform

Using CodeBuild provides native access to
AWS resources but can be more complexq

10 . 4

Begin documenting installation stepsBegin documenting installation steps

Generating the Route53 Domain Name before installation
Deploying ECS for the �rst time: deployment may stall
Managing credentials and other info via AWS Secrets Manager
Injecting con�g in ECS Task De�nitions w/Secrets Manager
Update secrets during runtime, managing ECS instances
Triggering a build / deploy with AWS CodeBuild, ECR

Document every novel interaction. This is
invaluable information.í

10 . 5

Major Deliverables for Sprint 3Major Deliverables for Sprint 3

Setup / Management guide
Running ECS environment
Running CloudFront /S3 web hosting environment
Running CodeBuild CI environment
Feature 2 completed
Features 3 and 4 in demoable state

May or may not match your reality. Are you in
production and rounding the corner on feature
completion?

í

10 . 6

11 . 1

Coming around the mountain… Coming around the mountain…

Wrap up features 3 and 4
Set up UI tests with a tool like Cypress
Begin end-user testing in earnest
Tune the platform, run stress tests

11 . 2

The bene�ts of Con�guration-as-CodeThe bene�ts of Con�guration-as-Code

You begin the project by delivering developers features in AWS
via your CaC platform
You set up your application stack with code
You externalized your environment variables
Developers built their code in Docker, not in the cloud
Docker in the cloud works like Docker locally, so developers can
monitor it
Your CI effort uses CodeBuild to automate cloud deployments
and operations like migrations

Containers make cloud development more
directq

11 . 3

Miscellaneous TasksMiscellaneous Tasks

Don’t forget to use logging in your applications
Docker container logs are output to CloudWatch
automatically in ECS
Use con�guration to determine where these are organized

Place CloudWatch Alarms on major services such as RDS,
containers

11 . 4

Wrap-up and �nal thoughtsWrap-up and �nal thoughts

Your app isn’t our app
This just shows relative timing for tasks that enable productivity
You don’t have to use ECS (try EKS, even Lambdas, but realize
the differences in development work�ow)
You don’t have to use SPAs (just use NuxtJS, Next.JS, Gatsby,
etc)
Look in to Docker containers for Lambdas, ECS Anywhere in the
most recent AWS announcements

12 . 1

Thank you!Thank you!

Feedback:
Other media:

Chariot’s blog:
Chariot, Conference vide sessions from ETE, other
conferences:
Join us for ETE 2021 - check @chariotsolution and

 for details coming soon

krimple@chariotsolutions.com

https://chariotsolutions.com/blog

https://youtube.com/chariotsolutions

https://phillyemergingtech.com

We’re available to help you with AWS
development as an AWS Partner -q

chariotsolutions.com/contact

12 . 2

