deconstructing
LAMBDA

Philly ETE 2014 - Darach Ennis - @darachennis

A Jjourney from speed at
any cost - to unit cost at
considerable scale

Philly ETE 2014 - Darach Ennis - @darachennis

LS
UBIQUITI™ EdgeMAX airMAX airFiber airVision ~ UniFi mFi "BUY

vy a.u’[dOOrS

with:2 new UniFi Access Points
UAP-Outdoor+ with Multi-Lane RF Technology
and UAP-Outdoor AC

Ubiquiti Customer Stories

UBIQUITI

world network

@y}
7@&m

~ZHODOSTa Enforta Deploys Ubiquiti's airMAX Technology to 150 Russian Cities, Bringing Broadband to Russia's Remote Regions - Learn more «2T»

O UBIQUITI NETWORKS SUPPORT COMPANY UBIQUITI NEWS & UPDATES
COMMUNITY
- i Newsletter Sign Up
vith Ubiquiti users around the world f n
Go to Community Site Ubiquiti Networks, Inc

small FASF
DATA guy

Interested in Data Patterns and War Stories (aka: Data Architectures)

Philly ETE 2014 - Darach Ennis - @darachennis

Big Data

“The techniques and technologies for such data-
intensive science are so different that it is
worth distinguishing data-intensive science from
computational science as a new, fourth paradigm”

- Jim Gray

Scale vs Speed

“Premature optimisation is the root of all evil.”
- Donald Knuth

“Premature evil is the root of all optimisation.”

- Nitsan Wakart

DATA intensive
science @SCALE

Philly ETE 2014 - Darach Ennis - @darachennis

Mechanical Sympathy

public class Zero {
private Zero() { }

public static final byte[] digest(byte[] rawData)
throws NoSuchAlgorithmException {
final MessageDigest digest = MessageDigest.getInstance("SHA-256");
return digest.digest(rawData);

}

public static String string(byte[] rawData) {
final StringBuilder sb = new StringBuilder();

for(byte b : rawData) {
sb.append(String. format("%02x", b& OxFF));
}

return sb.toString();
}

// string(digest(foo)) -> ~41576/sec

Mechanical Sympathy

public class One {
private One() { }

private static final char[] LUT = "0123456789%abcdef".toCharArray();

public static final byte[] digest(byte[] rawData)
throws NoSuchAlgorithmException {
final MessageDigest digest = MessageDigest.getInstance("SHA-256");
return digest.digest(rawData);

}

public static String string(byte[] rawData) {
final StringBuilder sb = new StringBuilder();

for(byte b : rawData) {
sb.append(LUTL(b & OxFQ) >>> 4]);
sb.append(LUT[b & 0x0@F]);

}

return sb.toString();
}

// string(digest(foo)) -> ~1071783/sec or a 25x speedup

Mechanical Sympathy

private static final char[] LUT = "0123456789%9abcdef".toCharArray();
private static final ThreadlLocal<MessageDigest> A = new ThreadlLocal<MessageDigest>();
private static final ThreadlLocal<StringBuilder> S = new ThreadLocal<StringBuilder>();

private static final MessageDigest a() {||
private static final StringBuilder s() {[]

public static final byte[] digest(byte[] rawData)
throws NoSuchAlgorithmException {
final MessageDigest digest = a(); // Thread local, lazy alloc
return digest.digest(rawData);

}

public static String string(byte[] rawData) {
final StringBuilder sb = s(); // Thread local, lazy alloc, set length 0

for(byte b : rawData) {
sb.append(LUTL(b & OxF@) >>> 4]);
sb.append(LUT[b & 0x0@F]);

}

return sb.toString(Q);
}

// string(digest(foo)) -> 1365798/sec or 32x speedup

A Wall Street Second

® 06 & Market Data Peaks x N

L] C | www.marketdatapeaks.com

Planning for the Peaks

Market data peaks every minute for October 29, 2013

Sign-up Sponsors Contact

MarketDataPeaks Home About
6.00M
5.00M
4.00M
3.00M
2.00M
1.00M
pg E—
09:00 am 10:00 am 11:00 am 12:00 pm 01:00 pm 02:00 pm 03:00 pm 04:00 pm
Data feed ! Cursor i Chart i Historic
WAl Feeds | ---er —eeeeeeee- i 537M 09:30am i 6.80M Dec21,2012

Mouse over the chart to display data values under the cursor in the legend box.
Drag over the chart to zoom into a selected area, then double-click to zoom out.

All data is processed and updated through
a single Exegy Ticker Plant in the Equinix
NY4 colocation facility. The data collected
is the total number of messages that occur
simultaneously in any given second
across all live data feeds, which are listed
here. The graph displays the highest one-
second peak that occurs in each minute.

exegy

Sponsors:

A Swiss Second

g/ [Market Data Peaks x _)
&«

C' www.marketdatapeaks.eu <%

Planning for the Peaks

Market data peaks every minute for October 29, 2013

MarketDataPeaks Home Sign-up Sponsors Contact

All data are processed and updated
through Exegy Ticker Plant appliances
residing in colocation facilities in Europe.
The market data infrastructure is provided
by MarketPrizm through the Prizm)
Solution. The data collected is the total
number of messages that occur

simultaneously in any given second
across all live data feeds, which are listed

here. The graph displays the highest one-
second peak that occurs in each minute.

] W Sponsors: e%egy

07:00 am 08:00 am 09:00 am 10:00am 11:00am 12:00 pm 01:00 pm 02:00 pm 03:00 pm 04:00 pm 05:00 pm

Data feed | Cursor : Chart : Historic MarketPrizm A

M All Feeds : 556 05:02 pm 1 26K 12:39 pm 1 321K Aug 2,2012

Mouse over the chart to display data values under the cursor in the legend box. B
Drag over the chart to zoom into a selected area, then double-click to zoom out. I

Small Data”? <= 128bytes

HTTP GET/POST - A typical RESTful performance

1000

© Reqg/Sec B Bw/Sec (MB) .. Avg Latency (ms) B Max Latency (ms) B Stdev (ms)

15,400 15,7687 15,445 15,330 15. 2 14. s
' J 100
3,907
1000 A
10
| I Akl I I 1
1 - - - - - - ' - 0.1
8 16 32 64 128 256 512 1024

Concurrent Connections

10000

100

Small Data”? <= 1K

HTTP GET/POST - A typical RESTful performance
O Reqg/Sec W Bw/Sec (MB) Avg Latency (ms) M Max Latency (ms) Il Stdev (ms)

1 2 4 8 16 32 64 128 256 512 1024
Concurrent Connections

1000

100

10

0.1

Scale

Big Events - 1Billion Sources

1000000

1000

Ballpark number of boxes if each box can handle 2500 events/second

M 1/dy M 1/hr = 1/mn M 1/sc

40,000
1,66
167
1.a.l 1.I

1/dy 1/hr 1/mn 1/sc 1/dy 1/hr 1/mn 1/sc 1/dy 1/hr 1/mn 1/sc 1/dy 1/hr 1/mn 1/sc
1 million 10 million 100 million 1 billion

Event Universe

Data
Sympathy?

Philly ETE 2014 - Darach Ennis - @darachennis

5V's

'Volume Velocity

» Terabytes « Batch

* Records/Arch * Real/near-time
* Transactions * Processes

* Tables, Files » Streams

Variety Value

5 Vs of i |
« Structured . » Statistica
* Unstructured Blg Data Events
* Multi-factor * Correlations
» Probabilistic * Hypothetical

» Trustworthiness
» Authenticity

* Origin, Reputation
 Availability

» Accountability

Veracity

5 \’s via [V-PEC-T]

* Business Factors
e Veracity' - The What
e ‘Value’' - The Why
* Jechnical Domain (Policies, Events, Content)

e Volume, Velocity, Variety

Source: Ashwani Roy, Charles Cai - QCON London 2013 - http:/bit.ly/1f2Pdf9

Big Data Industry History: Google’s Papers

GF S Map Redvee. RigTable
B oD I ::
g8y = - ba

Source: Ashwani Roy, Charles Cai - QCON London 2013 - http:/bit.ly/1f2Pdf9

Google’s Big Data Papers: 2003 — 2006

GFS — Google File

System

* 2003

* Distributed file
system

* 3 x copies

* Commodity
machines

* Colossus (2012)
\,

MapReduce

* 2004
* Input 2 Map 2
Partition 2>
Compare 2
Shuffle = Sort 2>
Reduce = Output

BigTable

* 2006
* Distributed Key-
Value column-
family based
database

Source: Ashwani Roy, Charles Cai - QCON London 2013 - http:/bit.ly/1f2Pdf9

Google’s Big Data Papers 2: 2010 - now

*2010

*Incremental update /
compute

* built on BigTable

* Adds transactions, locks,
notifications

*SPFs: “Stream Processing

Frameworks” + underlying
database

'S distributed stream Apach
YAHOO' 4computing platform i;::uebq of

Storm

Distributed and fault-tolerant realtime computation

*2010

*Online analytics and
visualization

*SQL like language for
structured data

*Each row is JSON object —
in protobuf format

*Column based

*Spanner (2012),
BigQuery, F1

Apache Drill [pEs:

cloudera gEIEE

ﬁ\ﬁ‘\\ﬁ‘: Tez/Stinger
ortonworks

*2010

*Scalable graph computing

*Worker threads = nodes
- parallel “superstep” 2>
messages = nodes 2>
Aggregator/Combiners
(global statistics)

*PageRank, shortest path,
bipartite matching

Apache Giraph [)ioate:

Microsoft
Trinity

Batch

The needs of the system outweigh the needs of
individual events and queries running in flight or active
within the system

Incremental

The needs of the individual event or query outweigh the
needs of the aggregate events or queries in flight in the
system

“‘Computing arbitrary functions on an arbitrary
dataset in real-time is a daunting problem.”

- Nathan Mérz

Lambda architecture is a
twitter scale architecture.
5k msgs/sec inbound
(tweets) on average (150k
peak?) - <1k ‘'small’' data -
Firehose outbound
(broadcast problem, tairly
easy to scale)

Lambda: http://bit.ly/Hs53Ur

Batch
Series KV
Serving Ny’
, Web - Dat MQ
\~_‘_’,// -__.}” Views

Apps

Apps

All new da
layer and t
batch laye

Lambda: A

ne speec

layer. Int

L new da

a IS appe

'a IS sent to both the batch

e

nded to

the master dataset. In the speed
ayer, the new data is consumed to

do incremental updates of the
realtime views.

Lambda: B

The master dataset is an immutable,
append-only set of data. The master
dataset only contains the rawest
information that is not derived from
any other information you have.

Lambda: http://bit.ly/Hs53Ur

Batch

Series

Apps

Speed S’ Apps

Views

Enrich, Transform, Store
Extract, Transform, Load

e From A: “rawest ... not derived"

* |n many environments it may be preferable to
normalise data for later ease of retrieval (eg:
Dremel, strongly typed nested records) to
support scalable ad hoc query.

e Derivation allows other forms of efficient retrieval
eg: using SAX - Symbolic Aggregate
Approximation, PAA - Piecewise Aggregate

SAX & PAA

PAA example: TS1 into 9-pieces 3

............................. N S N . i
L T
- e 11MW1¢| W T
| |
0 2 4 6 8 10 12 14 18 &
Tirme ticks 0 50 100 150 200 250
Piecewise Aggregate Symbolic Aggregate
Approximation Approximation

1sc -> 1Tmn -> 1hr -> 1dy -> 1wk -> Tmh -> 1yr

300

Lambda: C

The batch layer query
functions from scratch. The results of the
batch layer are called . The

batch layer runs in a while(true) loop and
continuously recomputes the batch views
from scratch. The strength of the batch

layer Is its ability to compute arbitrary

functions on arbitrary data. This gives it
the power to support any application.

Lambda: D

The serving layer indexes the batch views
produced by the batch layer and makes it
possible to get particular values out of a
batch view very quickly. The serving layer is
a scalable database that swaps in new
batch views as they’re made available.
Because of the latency of the batch layer, the
results available from the serving layer are
always out of date by a few hours.

Lambda: http://bit.ly/Hs53Ur

Batch

Series

Apps

Speed Seee’ Apps

Views

Think ‘Statistical

=

i [

)

- |
Compression
: "QI‘F aﬁ‘ﬁ;‘?‘j “‘: o lll....--....lll L]
ot A P 'POARK : REAGERARE O
BT i}’ |
= v h ‘#‘ o
_0" nl',i'"i D, olod 3. .

nttps://github.com/gornik/gorgeo - A geohash ES plugin

Lambda: E

The speed layer compensates for the high latency of updates
to the serving layer. It uses fast incremental algorithms and
read/write databases to produce realtime views that are
always up to date. The speed layer only deals with recent
data, because any data older than that has been absorbed
into the batch layer and accounted for in the serving layer.
The speed layer is significantly more complex than the
batch and serving layers, but that complexity is
compensated by the fact that the realtime views can be
continuously discarded as data makes its way through the
batch and serving layers. So, the potential negative impact
of that complexity is greatly limited.

Lambda: http://bit.ly/Hs53Ur

Batch

Series

Apps

_-/ Apps

Use a DSP + CEP/ESP or
‘Scalable CEP’

o Storm/S4 + Esper/...

e Embed aC

-ngine

=P/

=SSP within a

Distributed Stream processing

» Use Dirill for large scale ad hoc
query [leverage nested records]

Lambda:

Queries are resolved by getting results from both the
batch and realtime views and merging them
together.

Millwheel: http://bit.ly/1gWaNIC

Model

w
Web) (Window

w Queries \ Counter

I9POIN

&’ o
U o
. Out of Alerts

N Trend? 4

Monitor

Google’s “Zeitgeist
pipeline”

- Batch View

Queries are central to Complex
Event Processing / Event Stream Processing
architectures.

Unfortunately, though, most DBMS's still offer only
synchronous blocking RPC access to underlying
data when asynchronous guaranteed delivery
would be preferable for view construction
leveraging CEP/ESP techniques.

Lambda: Merging ...

» Possibly one of the most difficult aspects of near
real-time and historical data integration is
combining flows sensibly.

e For example, is the order of interleaving across
merge sources applied in a known deterministically
recomputable order? If not, how can results be
recomputed subsequently? Will data converge”

[cf: http://cs.brown.edu/research/aurora/hwang.icde05.ha.pdf]

Lambda: A start ...

Batch
Time Docs KV Rel
Series
S
Serving S~
Apps
Web ° Data MQ
\N/ b}/ Views

N

Speed R Apps

Lambda Architecture - An
architectural pattern
producing war stories Is
pbetter than no patterns at all

Thanks.

Questions?

@darachennis

