
The Function Final
Frontier

root

Model-View-Controller

๏ first formulated by Trygve Reenskaug
Adele Goldberg and others at Xerox
PARC in 1979

๏ long shadow, the basic concepts still
prevalent today. Good ideas eat their
children.

๏ At a very abstract level MVC is a sound
separation of concerns

๏ Implementations leave much to be
desired

๏ Stateful objects everywhere

Mutable DOM

Functional Programming?

๏ Functional Reactive Programming
(FRP), still active area of research

๏ Rx, doesn't address rendering

๏ Communicating Sequential Processes
(CSP), a coordination language, doesn't
address rendering

Om

f(D0) = V0

f(D1) = V1

diff(V0,V1) = CHANGES

Why diffs?

๏ Views just re-render when data changes

๏ No explicit observation (and thus no
resource issues)

๏ Much less logic to write around data
observation & view updates

demo

Modularity?

OOP
๏ Objects naturally modular

๏ but not modular with respect to state!

๏ Preserve component modularity

๏ But also achieve modularity with
respect to to state.

root

root

root

root

root

hidden state

App State
๏ An immutable tree of associative data

๏ “Global” state

๏ It’s not as scary as it sounds (like a
database!)

๏ Need local/global to be a point view

๏ How?

Cursors
๏ A triple, data to render (consistent),

path into the global app state, reference
to global app state

๏ Track the path via normal collection
access patterns (more natural than
zippers)

(def app-state
 {:foo {:bar [{:woz …} …]}})
!

(om/root some-view app-state
 {:target …})

:value {:foo {:bar …}}
:path []
:state #<Atom: {:foo …}>

(defn some-view [data owner]
 (reify
 IRender
 (render [_]
 (let [x (:foo data)]
 …))))

:value {:bar [{:woz …}…]}
:path [:foo]
:state #<Atom: {:foo …}>

(defn some-view [data owner]
 (reify
 IRender
 (render [_]
 (let [x (:foo data)]
 …))))

(defn some-view [data owner]
 (reify
 IRender
 (render [_]
 (let [x (:foo data)
 … …]
 (om/build another-view
 (get-in x [:bar 0])))))

(defn another-view [data owner]
 (reify
 IRender
 (render [_]
 …)))

:value {:woz …}
:path [:foo :bar 0]
:state #<Atom: {:foo …}>

Modularity regained!

Not enough …

root

root

f()

g()

h()

:instrument

๏ Aspect Oriented Programming

๏ Tasteful application of global concerns

๏ Can intercept the construction of any
component and modify behavior

๏ Generic editors! (Manipulate)

demo

root

:tx-listen

๏ Stream of full app states is not nice for
serializing to disk or sending updates to
remote servers

๏ :tx-listen gives path and old and new
value at that path

๏ like git patches!

Simple and Easy

๏ Undo/redo, time travel

๏ Meta components

๏ Synchronization online/offline

๏ Om components play well with others

UI Spectrum

session
@kovasb

demo

Questions?

