
REACTIVE APIS
SPRAY, AKKA & SCALA

Jan Macháček @honzam399

https://twitter.com/honzam399


EASY!
def api(request: HttpRequest): HttpResponse = { 
  ???
 }



FOR EVERY COMPLEX PROBLEM THERE IS AN
ANSWER THAT IS CLEAR, SIMPLE, AND

WRONG.



SPRAY'S APPROACH
A service is an Actor implementation that handles the incoming
HttpRequests, and replies with appropriate HttpResponses.

def receive = {
  case request: HttpRequest =>
    val response = HttpResponse(...)
    sender ! response
}



THE REAL DEAL
class HelloWorldService extends Actor {

  def receive: Receive = {
    case request: HttpRequest =>
      val response = HttpResponse(...)
      sender ! response
  }

}



TESTING THE SERVICES
Because the service is a plain Actor, one can test it using .TestKit

class HelloWorldServiceSpec 
  extends TestKit(ActorSystem())
  with SpecificationLike with ImplicitSender {
  val service = TestActorRef[HelloWorldService]

  "Any request" should {
    "Reply with Hello, world" in {
      service ! HttpRequest()
      expectMsgType[HttpResponse].entity 
        mustEqual HttpEntity("Hello, world")
    }
  }
}

http://doc.akka.io/docs/akka/snapshot/scala/testing.html


HOSTING THE SERVICES
Use spray-can HTTP server. We bind the services to it.

object HelloWorld extends App {
  val system = ActorSystem()
  val service = 
    system.actorOf(Props[HelloWorldService])

  IO(Http)(system) ! Http.Bind(
    service, "0.0.0.0", port = 8080)

  Console.readLine()
  system.shutdown()
}          

class HelloWorldService extends Actor { ... }



LET'S SEE NOW...
[INFO] (...) Bound to /0.0.0.0:8080
[WARN] (...) Configured registration timeout of 1 
             second expired, stopping





THE REAL DEAL
class HelloWorldService extends Actor {

  def receive: Receive = {
    case request: HttpRequest =>
      val response = HttpResponse(...)
      sender ! response
    case _: Http.Connected =>
      sender ! Http.Register(self)
  }

}



DEMO



CONVENIENT DSL
It is tedious to build a complex API by handling the
HttpRequests.
Construct Spray Routes using convenient DSL, and then turn
these routes to the Receive partial function.
Use similar DSL to unit-test the routes



ROUTED HELLO, WORLD
First, the Route itself:

trait DemoRoute extends Directives {

  val demoRoute: Route =
    get {
      complete {
        "Hello, world"
      }
    }
}



ROUTED HELLO, WORLD
Next up, expressing the Receive PF using the route:

class MainService(route: Route) 
  extends HttpServiceActor {

  def receive: Receive = runRoute(route)

}



TESTING OUR ROUTE
Spray's DSL extends to testing, too!

class DemoRouteSpec extends Specification 
  with Specs2RouteTest with DemoRoute {

  "Any request" should {
    "Reply with Hello, World" in {
      Get() ~> demoRoute ~> check {
        responseAs[String] mustEqual "Hello, world"
      }
    }
  }

}



DEMO



MORE DSL EXAMPLES
We can match—amongst others—on:

HTTP methods: get, post, put, ...,
Paths; including path-variables and query parameters:
path("customer" / IntNumber), parameter('id.as[Int])
HTTP headers: headerValueByName("User-Agent"),
Cookies: cookie("spray")

We combine parts of the DSL using ~



DEMO



COMPLETING
To complete a route, we must provide RequestContext => ().

complete does just that, or we can do it ourselves.

trait TweetAnalysisRoute extends Directives {

  val tweetAnalysisRoute: Route =
    post {
      path("tweets" / Segment) ???
    }
}



COMPLETING
To complete a route, we must provide RequestContext => ().

complete does just that, or we can do it ourselves.

trait TweetAnalysisRoute extends Directives {

  val tweetAnalysisRoute: Route =
    post { 
      path("tweets" / Segment)(sendTweetAnalysis) 
    }

  def sendTweetAnalysis(query: String)
                       (ctx: RequestContext): Unit = {
     ctx.receiver ! ChunkedMessageStart(...)
  }
  
}



A REAL APP
We want to stream results of a Twitter search, and show:

Counts of positive and negative tweets,
Counts of languages,
Counts of locations



A REAL APP



DEMO



THANK YOU!
Source at ,
Follow my on ,
Look out for blog post at 

github.com/eigengo/phillyete2014
@honzam399

cakesolutions.net/teamblogs

https://github.com/eigengo/phillyete2014
https://twitter.com/honzam399
http://www.cakesolutions.net/

