
i-tier: breaking up the
monolith

sean mccullough

groupon engineering

@mcculloughsean

this presentation is about
4 how Groupon's software stopped

working

4 how we rewrote a part of it

4 what went well and what didn't

this presentation isn't about
4 node.js

4 javascript

Problems

simple start
4 monolithic Ruby on Rails app

4 sustained business through
hypergrowth

4 small engineering team

4 simple product

acquisitions
4 CityDeal.de (Germany, most of EU)

4 SoSata (India)

4 Needish (South America)

ran as separate platforms

new products
4 Goods

4 Getaways

4 Reserve

improvements
4 Smart Deals

4 Browse and Search

4 Rocketman

one monolithic application

actually, two separate monoliths

move to mobile
4 ~50% of global transactions

4 streamlined user experience

4 mobile uses REST API

two facets of the same monolith

two facets X two monoliths

business was stuck
4 could not build features fast enough

4 wanted to build features worldwide

4 mobile and web lacked feature parity

4 could not change look and feel

The Plan

start with the frontend
4 unify global look and feel

4 REST API already built for mobile

4 backend services are more complicated
to unite

design goals
4 decouple teams

4 deploy apps on team schedule

4 allow for global design changes

4 I18n/L13n

4 be small, do the minimum

bakeoff
4 Node

4 MRI Ruby/Rails, MRI Ruby/Sinatra

4 JRuby/Rails, Sinatra

4 MRI Ruby + Sinatra+EM

4 Java/Play, Java/Vertx

4 Python+Twisted

4 PHP

why node
4 vibrant community

4 NPM!

4 frontend developers know javascript

4 performant enough

4 easy scaling (process model)

simple design
main: ({attributes, renderCallback}) ->
 # Presenter that sets the layout
 view = presenters.page 'subscribe', attributes

 # Grab the list of all the divisions
 grouponAPI.fetch { endpoint: 'divisions' }, (err, {divisions}, details) ->

 # If there’s an error, bail and pass the error along
 return renderCallback err if err?

 divisionsPresenter = presenters.divisions divisions, {
 currentDivision: attributes.query?.division_p
 }

 view.set { divisions: divisionsPresenter }

 render.pageHtml view, renderCallback

boundaries
4 apps only talk to api and memcached

4 layout is in a separate application

4 shared common asset bundle

growing pains
4 max sockets

4 breaking our infrastructure

subscribe page
4 simple application

4 partial implementation

4 proved out the concept

new problems
4 user authentication

4 more service calls

4 complicated routing

4 more traffic

4 share look and feel

Part III -
Architecture

grout
switchboard for incoming requests to I-
Tier applications

grout
Route on:

4 domain

4 locale

4 country

4 experiments

grout
4 groupon.com/deals/my-awesome-deal

4 itier-deal-page-vip.snc1/deals/my-
awesome-deal

4 groupon.de/browse/berlin

4 itier-browse-page-vip.lup1/browse/
berlin

grout
4 experiments between different

applications on the same URL

4 testing between alternative
implementations (including the legacy
monoliths!)

gconfig
configuration as a service

some config can change on the fly

config can be promoted from uat -> staging
-> prod

layout service
maintain consistent look and feel across
site

layout service options
4 distribute layout as library

4 use ESIs for top/bottom of page

4 apps are called through a “chrome
service”

4 fetch templates from service

layout service
chose a service

4 independent rollouts

4 changes can be shipped without
redploying all apps

4 easy to use in development

layout service
4 Uses semantic versioning

4 Roll forward with bug fixes

4 Stay locked on a specific version

4 Enable Site-Wide Experiments

Rewrite All The
Things!

rewrite
4 get the whole company to move at once

4 upporting two platforms is hard

4 as of June 2012 - move to I-Tier by
September 1st

rewrite
4 ~150 developers

4 global effort

4 feature freeze – A/B testing against
mostly the same features

it worked!

webpages got faster

sustained record traffic

what doesn't work
4 increased testing burden

4 tooling needs to catch up

4 increased operational overhead

culture problems
4 changed team workflow

4 teams are silos

4 code quality varies

next steps
4 streaming responses for better

performance

4 better resiliency to outages

4 distributed tracing

4 international (launching today!)

4 open source - testium

tl;dr
4 monolith

4 federated frontend

4 service oriented architecture

4 grout

4 gconfig

4 layout service

thanks!
slides: http://gr.pn/PqFLdo

sean mccullough

groupon engineering

@mcculloughsean

