Intro to Client-Side
Apps With Angulard$S

Philly Tech Week Dev Days, 5 April 2014

CHARI&T

SOLUTIONS
Practical, Smart Software Development

Software

Background: HTML and JavaScript
Tutorial: AngulardS PhoneCat

27?77

Y YV YV ¥

AngulardS

http://angularjs.org/

> Templating
> Data Binding

> "“Single-page” Applications

http://angularjs.org/
http://angularjs.org/

http://jquery.com/

> AJAX
> DOM Manipulation

> Event Handling

http://jquery.com/
http://jquery.com/

Node.JS

http://nodejs.org/

>

>
>
>

JavaScript-based, Event-driven WebServer
Simple HTTP server out-of-the-box
Add-on modules provide additional capabilities

Used for AngulardS PhoneCat tutorial

http://nodejs.org/
http://nodejs.org/

Sandboxes

JSFiddle: http://jsfiddle.net/
Plunker: http://plnkr.co/

http://jsfiddle.net/
http://plnkr.co/

Intro to Client-Side
Apps With Angulard$S

HTML

CHARI&T

SOLUTIONS
Practical, Smart Software Development

Hypertext Markup Language

A markup language uses markup codes interspersed with
text content

In HTML, markup codes are called tags

Tags start with <, end with >, may contain attributes

Example: <p color='red'>

Well-formed HTML matches every start tag with an end tag

Example: <i>this text is italicized</i>

Example: Hello World

<!doctype html>
<html>
<head>
<title> Example HTML Page </title>
</head>
<body>
<p>
Hello,
<i>World</i>
</p>
</body>
</html>

Common HTML Tags

Division (used to group/position other elements)

<div>

<p>

<ilmg src=..>

Paragraph

Span (used to style text within paragraph)
Image

Anchor (link)

Unordered (bulleted) List

Ordered (numbered) List

List item (usable only inside or <ol1>)

Table Tags

<table> Encloses the entire table

<tr> Encloses a single row in the table
<th> Table cell that's used as a header
<td> Table cell that’s used as data

Tables should be used for tabular data, not formatting

ID and Class

Every HTML tag supports id and class attributes
id must be unique
class can be used by multiple elements

A single element can have multiple classes

Used to select elements in CSS and JQuery

Cascading Style Sheets (CSS)

Separates appearance from content
Usually loaded as a separate file

May be specified in <style> element

Can apply different formatting depending on output device

Example: “desktop” site may use fixed header, mobile site may allow
header to scroll out of view

“Responsive design”

CSS Example

Set default font for all text in page

BODY { font-family: Calibri, "Times New Roman", serif; }

Render all text inside In green

STRONG { color: green; }

Render everything with class “highlight” in red
.highlight { color: #FF0000; }

Hide the <div> with id “hideme”
#hideme { visibility: hidden; }

Intro to Client-Side
Apps With Angulard$S

JavaScript

CHARI&T

SOLUTIONS
Practical, Smart Software Development

JavaScript

An object-oriented + functional programming language

Introduced in 1995 with Netscape Navigator 2.0
Popularity increased in early/mid-2000s with introduction of AJAX
Increasing use as server-side language circa 2010

JavaScript is not Java

But JavaScript is a registered trademark of Oracle (formerly Sun)
They were released at about the same time, Netscape supported both
One early use of JavaScript was interaction with Java applets

JavaScript + Browser

Scripts can react to events, modify DOM

Libraries such as JQuery simplify this process

Loaded and executed dynamically
Either from file or inline
Script execution delays page rendering

Might try to modify parts of page that haven’t rendered yet

Example: Hello World

<body>
<button id='clickMe' onClick='clickHandler () '>Click me</button>

<p id='fillMe'></p>

<script type='text/javascript'>
function clickHandler () {
var button = document.getElementById("clickMe") ;
button.style.visibility = "hidden";
var para = document.getElementById("fillMe") ;
para.innerHTML = "Hello, World";
}
</script>
</body>

JavaScript: The Bad Parts

Loosely typed, minimal error reporting
If something doesn’t work, look for typo

console.logand alert () are your friends

Too easy to create global variables
this is context-dependent

“Truthiness” encompasses more than you might think

JavaScript: The Good Parts

< $20 '

< 150 pages . |

Douglas Crockford Jaﬁr%%ipt'
JavaScript Evangelist The Good Parts
“Discoverer” of JSON
Creator of JSLint

http://www.crockford.com/

The unit of modularization for JavaScript programs

Establishes scope for variables and embedded functions

“Module pattern” used to create namespace, minimize global variables

May be named or anonymous
Anonymous functions typically used as callbacks (event handlers)

Named functions are visible in enclosing scope (may be global)

Function Examples

// named function -- creates variable “add”
function add(x, y) {
return x + y;

}

// anonymous function assigned to variable “doSomething”
var doSomething = function (x, y, fn) {
return fn(x,y);

}

// function invocation, passing named function as parameter
var x = doSomething(l, 2, add);

// function invocation, passing anonymous function as parameter
var y = doSomething(l, 2, function(x,y) { return x * y; });

Variables

Holds a reference to some value
Number (all numbers are floating-point)
String
Boolean (although lots of things act like booleans)
Function (a function’s name is also a variable)
Array
Object
Null
Undefined

A mutable, free-form collection of name/value pairs

Other languages call this a dictionary or hash

Objects may be nested to any depth

Members accessed by name
Dot notation: foo.bar

Bracket notation: foo["bar"]

May create piecemeal or as object literal

Object Examples

// create object literal with two members
var foo = { x: 12, y: 13 };

// access value from object
var z = foo.x + foo["y"]:;

// add new member -- a function
foo.addX = function(z) { return this.x + z };

// invoke function via object reference
foo.addX(17) ;

The Meaning of this

A reference to the “current” object
When a method is invoked via an object reference: the invoking object
When a function is invoked by name (sans object): the global context
Within an object literal: the global context

Best practice: when creating objects with functions, use

“module” pattern

Ensures that this is the module

The “Module” Pattern

Object that exposes data and methods, created using
anonymous function

Establishes a namespace for embedded functions

Allows hiding of internal data

Several variants
Crockford returns object literal, requires invoking function

Alternative uses new, relies on equivalence of object and function, does
not hide data, but is slightly less verbose

Module Pattern Example

var module = (function() {
var x = 12;

function addX(y) { return x + y }

return {
addX: addxXx
}
PO
var foo = module.addX(17) ; // 29
var bar = module.x; // undefined

Prototypal Inheritance

Every object has a “prototype” member
The default prototype depends on the object type
Can create new objects with specific prototype

If object does not define member, prototype checked
Prototypes may themselves have prototypes

Updates to prototype affect all objects with that prototype

Bad idea: change Object.prototype (Or String.prototype, ...)

Prototypal Inheritance Example

// create the prototype
var proto = { x: 12, y: 13 };

// two objects that use the prototype, don’t define their own members
var foo = Object.create(proto);
var bar = Object.create(proto) ;

// assigning foo.x overrides the prototype
foo.x = 17;

// this only updates bar.x (because foo now has its own x)
proto.x = 6;

// this updates both foo.y and bar.y
proto.y = 32;

JavaScript Object Notation

An object’s data, represented as a string
Example: { "x": 12, "y": 13, "z": ["foo", "bar"]
Has long been used to return data from server

Libraries to convert to/from JSON available for most languages

With rise of JS-based servers, used to upload as well

Taking over from url-form-encoded data

Requires extra work on “traditional” servers

}

Truthiness and Logical Tests

“Truthiness” indicates presence of a value

“Not true” is literal false, null, 0, or undefined
if (console) // may be true or false

if ("false") // true!

Two tests for equality

== converts arguments: 123 == "123"is true
=== does not convert;: 123 === "123"is false
Prefer === to avoid subtle bugs

Intro to Client-Side
Apps With Angulard$S

AngularJdS

CHARI&T

SOLUTIONS
Practical, Smart Software Development

What is AngularJS?

A framework for building client-side applications

Templating
Two-way data binding
Server provides static HTML and JSON data

Extends HTML using directives

May be specified as attributes or new tags (I prefer attributes)
Name starts with “ng”
Multiple ways to spell (eg: ng-2App, ngApp, ng: App)

Terminology

Model (aka $scope)

A “plain old JavaScript object” containing data to be rendered on page
May also have methods that interact with the model

Controller

Responsible for populating the model when page/view is loaded
View

General: the HTML (template) that is used to render the model

In single-page app: the part of the app that uses routing, partial templates

Terminology, cont

Service
A JavaScript object that provides shared functionality
Angular provides several services (eg, Shttp)

The application can create its own services, use dependency injection to
install them in controllers as needed

Module

A named object that holds the app’s controllers, services, directives, &c
Application code creates modules, registers them with Angular

<!doctype html>
<html ng-app>
<head>
<script src="lib/angular.js"></script>
</head>
<body ng-controller='MyController'>
<button ng-click='clickHandler()' ng-show='showButton'>Click me</button>
<p ng-hide='showButton'>{{content}}</p>

<script type='text/javascript'>
function MyController ($scope) {
$scope.showButton = true;
$scope.content = "";

$scope.clickHandler = function() {
$scope.showButton = false;
$scope.content = "Hello, World"
}

}
</script>

What Happens When Page Loads

1. Browser reads page, executes angular. js script

o angular.js attaches a “page ready” event handler

2. Angular examines DOM, discovers ngApp and
ngController directives, runs controller

o ngApp optionally identifies module where controller is found
o ngContoller identifies controller method; with no module, it's global

3. Angular examines page for templating commands and
executes them
o Scope of template is defined by ngController

ngApp

Directive that identifies the page as controlled by Angular

When Angular’s post-load handler sees an ngApp directive, it starts
processing the page

Only one ngApp may appear on a page; normally added to <html>
Optionally specifies the name of a module

The module must already have been created by application JavaScript

That module will be used to resolve controller methods, resources, &c

ngController

Associates a section of the page with specific model

You can have multiple controllers on one page -- but it's rare

|dentifies a function to populate model
Preferred: the function is defined as part of an explicit module

For playtime only: if no module, then looks for global function

ngShow / ngHide

Shows or hides current element based on expression
Expression valuated against the scope

JavaScript “truthiness”

Changes visibility only, does not modify DOM

Used for single-page apps: identifies the part of a page
where a partial template will be loaded

URL fragment ID (hashtag) identifies route

Example: http://localhost:8000/app/index.html#/phones

Application must explicitly configure routes
Each route has its own controller, “partial” template

Routes may include parameters, which are provided to controller

Event/Update Cycle

Angular captures events from all elements bound to model
When model changes, Angular rebuilds affected templates

Application code can trigger rebuild with $scope. Sapply ()

This is useful when integrating Angular into an application that already
communicates with server using JQuery or other library

Dependency Injection

Angular tracks named objects and supplies them as
parameters to controller and factory methods

Two ways to request injection:

// short form
myModule.controller ('MyController', function($scope, $http) {

/] ..

// long form
myModule.controller ('MyController', ['S$scope',

// ..

'$Shttp', function(s, h) {

Must use long form if minifying!

Angular and Legacy Apps

Angular can take over part of a page, with legacy code
handling the rest -- app can migrate to Angular over time

Internally, Angular uses “JQuery lite”
If application already uses “full” JQuery, Angular will use it too
Things to watch out for:

> |f loading page fragments via JQuery, must explicitly bootstrap
Angular

> |f retrieving data via JQuery, must call $scope. $Sapply ()
> Don’t forget doctype!

Intro to Client-Side
Apps With Angulard$S

CHARI&T

SOLUTIONS
Practical, Smart Software Development

Overview

A catalog of Android phones

Progressively enhanced: from hardcoded list of names, to
basic information retrieved from server, to multiple views

Available online: http://docs.anqgularjs.org/tutorial

http://docs.angularjs.org/tutorial

Tutorial Workspace

Each step in tutorial has its own directory in Workspace

step-00, step-01, ...
All application files in the app subdirectory
Pages served by Node.|s

Unpack the version of Node.js for your operating system and add to path
Run ./scripts/web-server. js in tutorial directory

Connect to server: http://localhost:8000/app/index.html

http://localhost:8000/app/index.html

step-01: Hardcoded HTML

Things to note:

> <!doctype html>
> Stylesheets (not used)

Things to try:

> Add class to list items, apply style

step-02: Simple Template

Things to note:

> Angular directives: ng-app, ng-controller, ng-repeat
> Controller to initialize model

> Module -- contains controller

> Templating (“handlebars”)

Things to try:

> Add a price field to model

step-03: Filtering

Things to note:

> Binding model variable to HTML element (ng-model)
> Added filter clause to ng-repeat
> Starting to use styles

Things to try:

> Restrict filter to phone name

step-05: Get Data from Server

Things to note:

> Shttp service
> Dependency injection
> Added orderBy clause to ng-repeat, filled by HTML drop-down

Things to try:

> Extract carriers from data payload, populate another drop-down, use
as filter

step-07: Routing and Views

Things to note:

Another JavaScript library: angular-route.js
index.html no longer contains markup
Module (app . js) now defines routes

Multiple controllers

Partial templates

URL rewritten when page loads

VYYVYVY

Things to try:

> Bogus URLs, with and without “catch all” route

step-08: Routing and Views,

Things to note:

> Phone list link construction; SrouteParams
> New data request for each detail page

> Hierarchical data

> Images use ng-src rather than src

Things to try:

> (Cache phone data

step-10: Event Handlers

Things to note:

> Function to update mainImageUrl
Things to try:

> Add click handler that cycles main image

