
J2EE Development with Apache Geronimo

Aaron Mulder
Chariot Solutions

Agenda

• Lightning Overview & Status Report

• Server Installation & Configuration

• Deployment Tools

• Configuring J2EE Applications for
Geronimo

• Q&A

slides are online for your reference

Speaker

• Aaron Mulder

• Geronimo Developer

• Works on deployment, management,
console, kernel, ...

• Online Geronimo book at http://
chariotsolutions.com/geronimo/

• CTO of Chariot Solutions

Overview & Status

Overview

• Complete J2EE 1.4 Application Server

• Built on best of breed components
(Tomcat/Jetty, OpenEJB, HOWL, etc.)

• Modular architecture (server core plus
services grouped into “configurations”)

• Ships with LDAP, Derby DB, sample apps

• Support for Spring, ServiceMix, more...

Status

• 1.0 released in early January

• J2EE 1.4 Certified, core features ready

• “Draft” of management console

• Initial performance testing complete

• Initial Eclipse, XDoclet support

• Many articles out and books available soon

Advantages

• Open community & open license

• Can build a custom distribution easily

• Web management console

• Fast JMS server included

• Integration with other products

• Multiple support options (free/commercial)

Management

• Web-based management console included

• Add/configure network ports

• Deploy/configure database pools

• Deploy/configure security realm

• JSR-77 support & easier Management API

• Statistics still pretty rudimentary

Management Console

Performance

• Ships with DayTrader application, which can
be used to performance-test Geronimo
against other application servers

• Performance is in the right ball park, but
does not yet reach commercial app servers

• Currently leak about 1 MB/hour under very
heavy load (with a 2GB heap)

Security

• We’re trying to do a good job, but there’s
still room for improvement

• Authentication required for remote
management/deployment

• Some password encryption in place (more
places where it’s needed)

• Security bugs are high-priority

1.0.1 Release

• Planned for early February

• Will include an installer package

• Security fix for Jetty on Windows

• Fixes to hot deployment of server configs,
deployment of unpacked EAR containing
unpacked WAR

• More as necessary

1.1 Release

• Maven 2 support?

• Management improvements (console, more
statistics providers, etc.)

• Still more modular configurations (easier to
remove EJB container, etc.)

• Performance & tooling improvements

• Complete web clustering

2.0 Release

• Targeting J2EE 1.5 (J2SE 1.5, EJB3, Web 2.5,
annotations, generics, etc.)

• Significant improvements to application
security infrastructure

• Portal server integration

• Robust clustering

• New, portable CORBA implementation

Installation &
Configuration

Installation

• .ZIP & .TAR.GZ distributions available now

• ZIP/TAR: Download and unzip either the
Jetty or the Tomcat distribution

• Edit ports, etc. in var/config/config.xml

• Installer: run java -jar geronimo-installer.jar
and make your selections accordingly

Start & Stop

• Start: run java -jar bin/server.jar

• command-line options:

• --long (simpler startup output)

• --quiet (no progress bar)

• -v or -vv (more log output to console)

• Stop: Ctrl-C or java -jar bin/shutdown.jar

Startup Sequence
Booting Geronimo Kernel (in Java 1.4.2_09)...
Starting Geronimo Application Server
[*************] 100% 18s Startup complete

 Listening on Ports:
 1099 0.0.0.0 RMI Naming
 1527 0.0.0.0 Derby Connector
 4201 0.0.0.0 ActiveIO Connector EJB
 4242 0.0.0.0 Remote Login Listener
 8080 0.0.0.0 Jetty Connector HTTP
 8443 0.0.0.0 Jetty Connector HTTPS
 61616 0.0.0.0 ActiveMQ Message Broker Connector

 Started Application Modules:
 EAR: org/apache/geronimo/Console/Jetty
 WAR: org/apache/geronimo/applications/Welcome/Jetty

 Web Applications:
 http://server-hostname:8080/
 http://server-hostname:8080/console
 http://server-hostname:8080/console-standard

Geronimo Application Server started

Configuration (easy)

• Start server and point browser to http://
localhost:8080/console/

• Use the screens there to edit network
ports, add database connection pools, etc.

• May need to restart the server to apply
certain changes

• Can’t use if original network ports conflict

Configuration (hard)

• Most configuration is controlled by
config.xml in var/config

• controls which configurations to load

• lets you override settings on any server
component (identified by config name +
component name + attribute name)

• Can also deploy additional services by hand

config.xml
<attributes
 xmlns="http://geronimo.apache.org/xml/ns/attributes">

 <configuration name="geronimo/rmi-naming/1.0/car">
 <gbean name="RMIRegistry">
 <attribute name="port">1099</attribute>
 </gbean>
 <gbean name="NamingProperties">
 <attribute name="namingProviderUrl">
 rmi://0.0.0.0:1099
 </attribute>
 </gbean>
 </configuration>
 ...
</attributes>

Logging

• Uses Log4J

• Config file at var/log/server-log4j.properties

• Server log at var/log/geronimo.log

• Console log level defaults to INFO (reduce
with -v or -vv on startup)

• Can search server log and web access logs
in the console (though not as fast as grep)

Database Pools

• Pretty straightforward to add via the
console

• Can deploy by hand as well, by writing a
connector deployment plan and running
the deploy tool (more on this later)

• Options include pool size, SQLException
sorter class, etc.

• Can also deploy within an application

JMS Resources

• The standard Geronimo configuration
starts an ActiveMQ server

• Adding connection factories in the console
is straightforward (destinations coming...)

• Can deploy by hand as well, by writing a
connector deployment plan and running
the deploy tool (more on this later)

• Can also deploy within an application

Security Realms

• Based on JAAS LoginModules

• Default realm based on properties files in
var/security (used for console login, etc.)

• Can also add auditing, lockout on repeated
attempts, etc. with additional LoginModules

• Can configure in the console or by
deploying a custom configuration

JAAS LoginModules

• A realm normally uses one LoginModule,
but may include several

• Extra features like auditing are added by
using multiple LoginModules for the realm

• When mapping security later, you’ll need to
know what classes the LoginModules use
to represent the Principals (users/groups)

Realm Example

SQL Login
Module

Lockout
Login Module

Auditing
Login Module

SQLSecurityRealm

Required

Required

Optional

1.

2.

3.

Included Login Modules

• Properties File

• Kerberos

• LDAP

• SQL

• Auditing

• Lockout on repeated failure

Deployment Overview
& Tools

Deployment Overview

• For apps: need an archive or directory with
a J2EE deployment descriptor, and typically
a Geronimo deployment plan

• For services (custom configurations): just
need a Geronimo deployment plan

• Use the deploy tool or the hot deploy
directory to deploy the app or service

Deployment Plan

• aka “server-specific deployment descriptor”

• Geronimo plans are based on XML
Schemas (normally one per module type)

• Schemas can be found in schemas/

• Always have a configId (a unique ID for
the module) and optional parentId and
include’s (used to set up class loaders)

Typical Plan
<?xml version="1.0" encoding="UTF-8"?>
<web-app
 xmlns="http://geronimo.apache.org/xml/ns/j2ee/web-1.0"
 configId="geronimo/jmxdebug/1.0/car"
 parentId="geronimo/j2ee-server/1.0/car">

 <dependency>
 <uri>
 commons-collections/commons-collections/3.1/jar
 </uri>
 </dependency>

 <context-root>/debug-tool</context-root>
 <context-priority-classloader>
 false
 </context-priority-classloader>
</web-app>

Digression:Namespaces

• Several part of the plan (typically the ones
reused across many plan types) come from
different namespaces

• You can write your files all in the owning
plan’s namespace, and Geronimo will be
fine with that (but XML editors may not)

• You can use the correct namespaces and
Geronimo will be fine with that too

Strictly Correct Plan
<?xml version="1.0" encoding="UTF-8"?>
<web-app
 xmlns="http://geronimo.apache.org/xml/ns/j2ee/web-1.0"
 xmlns:dep=
 "http://geronimo.apache.org/xml/ns/deployment-1.0"
 configId="geronimo/jmxdebug/1.0/car"
 parentId="geronimo/j2ee-server/1.0/car">

 <dep:dependency>
 <dep:uri>
 commons-collections/commons-collections/3.1/jar
 </dep:uri>
 </dep:dependency>

 <context-root>/debug-tool</context-root>
 ...

Deploy Tool

• Communicates with a running server

• Run with java -jar bin/deployer.jar
[options] command [command-options]

• Commands include login, help, deploy,
undeploy, redeploy, list-modules, etc.

• Normally prompted for a username and
password (“system” and “manager” unless
you selected something different)

Remote Deployment

• Deploy tool can manage and deploy to a
remote server

• Need to be able to access the RMI port
(1099) and an HTTP(S) port (8080)

• Must have the remote-deploy web
application deployed on the server (it is)

• use --host and --port (or perhaps --uri)

Module Lifecycle

Not Present Not Running

Running

Distribute

Start

Undeploy

Undeploy

Stop

Deploy =
Distribute + Start

Redeploy =
Undeploy + Deploy

Sample Commands

• java -jar bin/deployer.jar ...

• login

• deploy [archive] [plan]

• undeploy configId

• redeploy [archive] [plan] [configId]

• stop/start configId

• list-modules

Config IDs

• When you deploy, you’ll get output like:

Deployed geronimo/webconsole-jetty/1.0/car

• That is the Config ID for the module, used
to start, stop, undeploy, redeploy it

• It is set by the configId in the deployment
plan, or the JAR name otherwise

In context...
<?xml version="1.0" encoding="UTF-8"?>
<web-app
 xmlns="http://geronimo.apache.org/xml/ns/j2ee/web-1.0"
 configId="geronimo/webconsole-jetty/1.0/car"
 parentId="geronimo/j2ee-server/1.0/car">
...

> java -jar bin/deployer.jar deploy console.war
Deployed geronimo/webconsole-jetty/1.0/car

> java -jar bin/deployer.jar stop
 geronimo/webconsole-jetty/1.0/car

> java -jar bin/deployer.jar list-modules
Found 33 modules
 geronimo/webconsole-jetty/1.0/car
 ...

Parent IDs

• The optional parentId attribute controls
the ClassLoader structure and startup order

• Can additionally specify import elements in
the body of the deployment plan

• For startup order, can also just deploy a DB
pool or JMS resource as part of an EAR

• Typical value is geronimo/j2ee-server/1.0/car

Hot Deploy Directory

• geronimo/deploy/

• Copy files to this directory to deploy,
update to redeploy, delete to undeploy

• On startup, recognizes new deployments,
but will not undeploy or redeploy

• Should use either command-line deployer
or hot deployer for any given module

Maven Plugin

• Deployment plugin for Maven 1.x can start
& stop server, deploy/undeploy/redeploy
applications, etc.

• Can be included in build scripts and won’t
return until application is running (for
subsequent testing, etc.)

• Maven 2 & Ant plugins in 1.1 or 2.0

Eclipse Plugin

• Work with Eclipse WTP

• Can create Geronimo apps, including
XDoclet-based EJBs, etc.

• Can run an embedded Geronimo server

• Can deploy to Geronimo

• Not quite in a “finished” state, but working

Debugging

• In IDEA, create a new debugging
configuration and select “Remote”

• IDEA gives you a bunch of command-line
parameters; start Geronimo with those
java -Xdebug -Xnoagent... -jar bin/server.jar

• Then remote connection works perfectly

• Eclipse can run and debug Geronimo locally

Common Deployment
Plan Features

Plans, revisited

• Generally hold things like:

• Security mapping

• Database/JMS/EJB/Web Service reference
mapping

• Component-specific configuration (EJB
CMP, RA config settings, etc.)

• Required if any of that mapping is necessary

Common Elements

• <dependency> lists a JAR that should be
added to the module’s class loader

• The JAR must be in geronimo/repository

• The “uri” is in the repository format of
groupId/artifactId/version/type, like the
standard geronimo/j2ee-server/1.0/car

• <gbean> lists custom services to be loaded
when this module is loaded

Common Elements...

• <security> holds security mapping (which
users/groups are in which J2EE roles)

• <ejb-ref>, <ejb-local-ref>, <resource-ref>,
<resource-env-ref> hold more mapping

• Doesn’t use JNDI, uses a combination of
the app name and component name

• <service-ref> resolves Web Services clients

3rd Party JAR Example
File at geronimo/repository/postgresql/jars/
 postgresql-8.0-313.jdbc3.jar

<dependency>
 <uri>postgresql/postgresql-8.0/313.jdbc3/jar</uri>
</dependency>

<dependency>
 <groupId>postgresql</groupId>
 <type>jar</type>
 <artifactId>postgresql-8.0</artifactId>
 <version>313.jdbc3</version>
<dependency>

Component Mapping

• Need a name to identify the reference
we’re resolving, then one of a:

• link (short name identifying the target, in
same application or top-level in server)

• “target-name” (long name uniquely
identifying the target anywhere in server)

• group of elements containing all the
components of the target-name

Component Example
<resource-ref>
 <ref-name>jdbc/MyDatabase</ref-name>
 <resource-link>PostgreSQLPool</resource-link>
</resource-ref>
<resource-ref>
 <ref-name>jdbc/MyDatabase</ref-name>
 <target-name>geronimo.server:J2EEApplication=null,
J2EEServer=geronimo,JCAResource=PostgreSQLPoolConfigID,
j2eeType=JCAManagedConnectionFactory,name=PostgreSQLPool
 </target-name>
</resource-ref>
<resource-ref>
 <ref-name>jdbc/MyDatabase</ref-name>
 <module>PostgreSQLPoolConfigID</module>
 <type>JCAManagedConnectionFactory</type>
 <name>PostgreSQLPool</name>
</resource-ref>

Security Mapping

• Security settings declared at the application
level (EAR) apply to all included modules

• Map principals (by principal class and name)
to J2EE Roles

• Indicate a default principal to use when the
user does not authenticate

• Indicate a principal to use whenever a run-
as role applies

Security Example
<security>
 <default-principal>
 <principal name=”nobody”
class=”org.apache.geronimo.security.realm.providers.Geroni
moUserPrincipal” />
 </default-principal>
 <role-mappings>
 <role role-name=”Administrators”>
 <principal name=”Admins”
class=”org.apache.geronimo.security.realm.providers.Geroni
moGroupPrincipal” />
 <principal name=”Aaron”
class=”org.apache.geronimo.security.realm.providers.Geroni
moUserPrincipal” />
 </role>
 </role-mappings>
</security>

J2EE Module
Deployment

Web Applications

• Plan in WAR at WEB-INF/geronimo-web.xml

• Web settings for context path, classloader
configuration (parent-first vs. WAR-first),
security realm used to validate logins

• Container-specific virtual host settings

• Otherwise pretty standard (dependencies,
resource/EJB/service references, security...)

Web App Plan
<?xml version="1.0" encoding="UTF-8"?>
<web-app
 xmlns="http://geronimo.apache.org/xml/ns/j2ee/web-1.0"
 configId="MyWebAppName"
 parentId="geronimo/j2ee-server/1.0/car">

 <dependency ...>
 <context-root>/debug-tool</context-root>
 <context-priority-classloader>
 false
 </context-priority-classloader>
 <container-config ...>
 <ejb-ref ...> <service-ref ...> <resource-ref ...>
 <security-realm-name>SQLRealm</security-realm-name>
 <security ...>
 <gbean ...>
</web-app>

EJB JARs

• Plan in JAR at META-INF/openejb-jar.xml

• EJB settings for CMP/CMR, JNDI/CORBA/
Web Service settings for remote clients,
MDB configuration

• Otherwise pretty standard (dependencies,
resource/EJB/Web Service references,
security, gbeans, etc.)

CMP Settings

• DB syntax mapping & DDL generation

• Table/column mappings

• Resolving unknown primary keys

• Automatic PK generation

• Prefetch groups

• Query tuning

CMR Settings

• Maps one-to-one and one-to-many
relationships using foreign keys

• Maps many-to-many relationships using a
join table

• Can set prefetch group to use when a CMR
field is accessed, including multiple levels at
once

EJB Plan
<?xml version="1.0" encoding="UTF-8"?>
<openejb-jar
 xmlns="http://www.openejb.org/xml/ns/openejb-jar-2.0"
 configId="MyEJBJarName"
 parentId="geronimo/j2ee-server/1.0/car">

 <dependency ...>
 <!-- some CMP settings here -->
 <enterprise-beans>
 <session ...>
 <entity ...>
 <message-driven ...>
 </enterprise-beans>
 <relationships ...>
 <security ...>
 <gbean ...>
</web-app>

J2EE Connectors

• Plan in RAR at META-INF/geronimo-ra.xml

• Configures instances of the resource
adapter, connection factory instances, and
admin objects

• Database: connections to multiple DBs,
with same or different drivers

• JMS: connection factories & destinations

Inbound Connectors

• Configure the thread pool (WorkManager)
and connectivity to the messaging server

• Configure destinations that can be accessed
individually or mapped to MDBs

• Supports any connector, JMS or otherwise

• Ships with ActiveMQ resource adapter for
JMS connections and destinations

Outbound Connectors

• Support connection pools (single pool,
subpools per user, etc.)

• Configurable timeout for a caller to wait
for a connection

• Configurable timeout to reclaim
connections in the pool

• Ships with TranQL adapter for JDBC pools

Connector Strategies

• Normally deployed as a top-level module (a
server-wide JDBC pool, etc.)

• This is how the console does it

• Can also package it within an EAR, so the
DB pool or JMS resources are deployed
and undeployed with the application

• Still visible to other applications though

Connector Plan
<?xml version="1.0" encoding="UTF-8"?>
<connector xmlns="http://geronimo.apache.org/xml/ns/j2ee/
connector-1.0"
 configId="MyConnectorName"
 parentId="geronimo/j2ee-server/1.0/car">

 <dependency ...>
 <resourceadapter>
 <resourceadapter-instance ...>
 <outbound-resourceadapter>
 <connection-definition>
 <connectiondefinition-instance ...>
 </connection-definition>
 </outbound-resourceadapter>
 </resourceadapter>
 <adminobject ...>
 <gbean ...>
</web-app>

Application EARs

• Plan in EAR at META-INF/geronimo-
application.xml

• Can point to a module’s Geronimo
deployment plan inside the EAR but
outside the module JAR, or can just put the
whole module deployment plan in here

• Can specify dependencies and security
settings for all the modules in one shot

Sample EAR Contents

my-app.ear/
 my-web.war
 my-ejbs.jar
 tranql-connector-1.1.rar
 some-3rd-party-library.jar
 plans/
 web.xml
 ejb-jar.xml
 geronimo-web.xml
 geronimo-ejb-jar.xml
 dbpool-definition.xml

EAR Plan
<?xml version="1.0" encoding="UTF-8"?>
<application xmlns="http://geronimo.apache.org/xml/ns/
j2ee/application-1.0"
 configId="MyApplicationName"
 parentId="geronimo/j2ee-server/1.0/car">

 <dependency ...>
 <module>
 <connector>tranql-connector-1.1.rar</connector>
 <alt-dd>plans/dbpool-definition.xml</alt-dd>
 </module>
 ...
 <security ...>
 <gbean ...>
</web-app>

Clients

• Supports J2EE application clients, with a
client container (same machine as server)

• Uses a client deployment plan

• Can access remote EJBs and kind of
supports connectors

• Supports normal “J2SE” clients, using a
JAAS login and Subject.doAs

Summary

Closing Thoughts

• A complete J2EE server

• Configuration and DB/JMS/Security setup
through the web console

• Deployment tool and hot deploy directory

• Deployment plans for J2EE modules

• Can pack resources & services in an EAR

In the “Advanced” talk:

• Building custom Geronimo distributions

• The management API

• CORBA in and out of Geronimo

• Writing and deploying GBeans (custom
services for Geronimo)

• Using Derby, Spring, ServiceMix, Pluto,
UDDI, & Apache LDAP within Geronimo

Q&A

ammulder@chariotsolutions.com

Slides at http://chariotsolutions.com/geronimo/

