
My
First Three Weeks

on Rails
Aaron Mulder

Chariot Solutions

Background
• J2EE developer

• Mac/Linux platform

• Have used dynamic languages before
(mostly Perl, some P/Jython)

• Never used Ruby

• Suddenly found myself helping out on a real
Rails project!

Let’s get something out
of the way right now...
• Documentation motto: “Grr.... Arrrgh!”

• Dear RDoc, why can’t you be like JavaDoc?

• If you combine the book and the RDoc and
the online documentation and Google, you
get nearly 80% of what you need

• Try “ri [ClassName]” if you really want to
be annoyed, or http://api.rubyonrails.com/
and http://www.ruby-doc.org/

Tools & Setup

Gem & Rails

• Start on rails 0.14.3 (easy upgrades)

• Though older version has more explicit
scripts and configuration files

• Try “gem list”, “gem list rails”, “gem update
rails”

• gem will actually store more than one copy
of the package (“gem uninstall -v 2.3 foo”)

MySQL

• Any installation process is OK for MySQL

• But MySQL 4.1 is safest

• Ruby native MySQL drivers are bad (esp. if
client or server is OS X, etc.)

• Install the C drivers, it’s quick and easy and
your Rails config/code doesn’t change

Source Control

• Can put entire rails generated directory
under source control

• May need to register new extensions (yml,
rhtml, rb)

• Main problem is that I keep accidentally
checking in config/database.yml -- I want
some way to leave it out of source control
but generate it on the first build...

Build Scripts

• Ha ha ha...

• Actually a little annoying not to be able to
do certain things during a “build”

• Can put code in config/environment.rb?

• Use “rake” for certain setup tasks -- can
add own rake tasks (more on this later)

• Use “rake --tasks” to see available tasks

IDE

• Kate on Linux has the best Ruby syntax
highlighting!

• Need to have lots of files at your fingertips

• Editor with embedded tree view is nice,
otherwise a nearby Finder/Explorer/Konq

• Eclipse environment seems to be evolving
rapidly (I haven’t tried the latest)

Misc

• DB Browser

• I still use DBVisualizer

• Graphics

• HTML/CSS Editor

• ...

Database Stuff

Instances

• Ruby builds-in support for development,
test, production databases/environments
(including “init” scripts...)

• Can leverage this in your own batch/tool/
client code by setting appropriate vars

• All tests run against test by default,
everything else against development.
Production has “special properties”.

Scripts

• Must have column definitions handy for
every table! I refer to the scripts a lot, but
a DB browser is handy too

• Rake can copy your dev database structure
(tables, keys, etc.) to test, but you have to
keep dev up to date and remember to run
the Rake task before testing

• No need to have test data scripts...

Fixtures

• Rails uses test data in “fixtures” (named
hashes, where each has the data for a row)

• Make sure every entry uses a unique name!

• Fixtures don’t work automatically with
foreign keys (gee, who would use those?)

• Very handy for immortalizing test data

A Fixture
test/fixtures/user.yml:

test_user:
 id: 1
 username: aaron
 password: secret
 first_name: Aaron
 last_name: Mulder
 created_at: 2005-11-16
 updated_at: <%= Time.now.strftime(
 "%Y-%m-%d %H:%M:%S") %>
another:
 id: 2
 ...

A Custom Rake Task

lib/tasks/load_my_fixtures.rake:

desc "Load fixtures in correct order"
task :load_my_fixtures => :environment do
 require 'active_record/fixtures'
 ActiveRecord::Base.establish_connection(
 RAILS_ENV.to_sym)
 tables = ["parent","child","three","four",...]
 Fixtures.create_fixtures('test/fixtures', tables)
end

Typical DB Procedures

• mysql ... < db/drop_tables.sql

• mysql ... < db/create_tables.sql

• rake load_my_fixtures

• script/server

• rake clone_structure_to_test

• ruby test/unit/some_test.rb

DDL

• Columns named “type” will cause problems

• If you don’t name your foreign keys and
have problems, try “show create table
table_name” in MySQL

• Ideal to give every table an “id” primary key
(set to auto_increment)

• Rails prefers one table with a type and
many extra fields to “inheritance” tables

Ruby Is Not Java

Some Differences

• ClassPath

• Imports

• Main

• Interfaces

• Mixins / Mult. Inheritance / Op. Overloading

• Unspecified fields/methods

Class Path & Import

• There are certain default search locations

• Try putting one of these in environment.rb:
ADDITIONAL_LOAD_PATHS.each { |file| puts "#{file}" }

config.load_paths.each { |file| puts "#{file}" }

• For child dirs off any of those, use:
require 'batch/upload_job' # for upload_job.rb

• Require takes a filesystem case String

main(args/argc,argv)

• There is none

• Whatever Ruby file you run can have
statements in the file but outside of the
classes it contains, and those will be run
when the file is run

• There’s a global variable ARGV for the args

• But, “ruby foo.rb” doesn’t always load rails...

script/runner

• script/runner does actually load rails (and
you can give it a DB environment too) and
then executes whatever you pass it

• Try script/runner “require ‘foo’”

• Might want to alter script/runner to do
“ARGV.shift” to take the execution
command out of the argument list

Interfaces

• I don’t know what you can do about this?

• I wanted a server connectivity class with a
real back end and a mock back end for
when the server is not available

• I have to use my eyeballs to make sure they
have the same methods/params?

• Dear gurus, any suggestions?

Mixins

• People talk about using this for multiple
inheritance, but I don’t think of it that way

• I use it to access utility functions that I
couldn’t get otherwise (date helpers for a
controller, when they’re in a view class)

• At the top of the controller file:
include ActionView::Helpers::DateHelper

Unspecified Properties

• The model objects get methods for all the
database columns

• But that’s not visible anywhere in the
source code

• When creating a new model object, what
fields do you have to set?

• A lot of time spent referring to create SQL

Give Me Type Safety...

• Some of the most frustrating errors for me
were where I ended up with the wrong
object in my variable

• Try debugging with: puts “#{foo.type}”

• Why can’t it auto-convert String for math?

• Errors may be caused by incorrect method
arguments (more on this in a moment...)

Coding Stuff

Models: Find vs. Relate

• In some cases, can put pretty much the
same thing in a relationship as you could in
a finder (SQL, criteria, ordering...)

• Why not just declare a method that uses a
find call under the covers?

• Relationships add multiple methods, etc.

• Find can do parameters/substitution

Learning from Rails

• Notice how all the special Rails stuff takes a
Hash as an argument?

belongs_to :parent, :class_name =>
"ParentType", :foreign_key => "parent_id"

• That’s because the method would have 12
arguments and it would be impossible to
consistently get them in the right order

• Not a bad idea... Not bad at all... :)

Speaking of belongs_to

• Relationship specifiers are a little goofy

• belongs_to vs has_one -- works alright for
“child” tables but not “subclass” tables

• What properties do you use if the foreign
key column name doesn’t match the
remote table name? (e.g. parent_id points
to a table not named “parents”)

Relationship Example
belongs_to :parent, :class_name =>
"MyParent", :foreign_key => "parent_id"

• The first bit (parent) is the name of the
property you’ll use to access/navigate this

• The next bit (class_name) is the type of
object on the other end

• The last bit (foreign_key) is the name of the
foreign key column

That Evil ‘Type’

• Object.type is the type (class) of an object

• Rails somehow uses type to manage a class
hierarchy based on rows in a single table
with different type codes

• Now your table has a type field too?!?

• Try providing manual accessor methods
with a different name:

Avoiding Type Conflicts
class Event < ActiveRecord::Base
 has_one :playout_event
 has_one :switch_event
 has_one :overlay_event

 # "type" attribute is defined by Object!
 def event_type
 read_attribute("type")
 end

 def event_type=(type)
 write_attribute("type", type)
 end
end

Die, Middle Tier, Die!

• There’s no reason to put business logic in a
standalone object or in the controller

• Just put it in the model! (often as a class
method)

• Event.schedule(...) and Event.cancel() rather
than EventManager.scheduleEvent(...) and
EventManager.cancelEvent(eventID)

Controllers

• A view (.rhtml) has access to any instance
variables of the controller (extends it??)

• There doesn’t seem to be anything like
request.setAttribute(“foo”, bar);

• May end up with a number of instance
variables, only some of which are valid for
any given view... But at least this works a
little better in a dynamic language.

Error Handling

• Seems pretty convenient -- if a model
produces a validation error it can pop right
into specific messages on the view

• Not as clear how to do it if the form
doesn’t directly correspond to a model
object

View Cleverness

• The rails “form tags” are pretty good at
reading data from a model object to
populate a form, and reading data from a
form submission into a hash for you

• Then you can use model.update_attributes
(@params[:hash_name]) to copy the changed
data into the model -- nice!

View Weirdness

• I want to have a small form on a page that
doesn’t quite correspond to a model object

• Reading out of the hash after a form
submission works well!

• There’s no way to pre-populate the form
(e.g. by sending the view a hash instead of
an object that contains the default values)
-- need to use a non-Rails input widget

Speaking of Hashes

• Don’t be try to use Strings as Hash keys --
it may or may not work depending on how
the Hash was populated

• Bad: foo[“key”] = value bar = foo[“key”]

• Good: foo[:key] = value bar = foo[:key]

• Perhaps somebody else can explain this... :)

Utility Weridness

• Some classes that are not associated with
model objects don’t automatically reload
when changed

• Need to stop and start WebBrick

• There’s got to be some way around this! I
feel like.... a J2EE developer! :)

Testing

• Built in unit tests (create a model, query for
models, etc.)

• Built in functional tests (call controller
methods with fake data as if submitted
from web form)

• “rake test_units” & “rake test_functional”

• Also “ruby test/unit/foo.rb” to run just one

Test Example
require File.dirname(__FILE__) + '/../test_helper'

class EventTest < Test::Unit::TestCase
 fixtures :parent, :event, :child, ...

 def setup
 @event = Event.find(1)
 end

 def test_something
 assert ...
 end
end

More Issues...

• Some data seems cached?

• No obvious way to bulk insert data?

• Date/time manipulations are a little painful

• Cool stuff, just scattered & incomplete

• Time, DateHelper, Rails Number utils

• if event.date + 6.hours < 3.days.ago

Properties & Initializers

class MyObject
 attr_reader :id, :name

 def init(id, name)
 @id = id
 @name = name
 end
end

obj = MyObject.new(1, “Hello”)
obj.name = “Goodbye #{obj.id}”

Method Call Parens

• It seems that it’s best to use them unless
it’s quite obvious that they’re not necessary

• Makes it clearer what total expression a
certain bit of logic applies to

• Makes it clear what’s a method argument
on a return line, vs a separate value

return do_something “foo”, “bar” if baz

Summary

Final Thoughts

• A little more solid documentation would go
a long way

• Biggest pain point is not knowing what
properties a model class has

• Next: getting method args correct

• Can develop plumbing very quickly; mostly
it comes down to writing business logic and
the UI (all the better to AJAX you with!)

Discussion / Q&A

