
Trends affecting the
Future of Enterprise Java

Floyd Marinescu

CEO & co-founder, InfoQ.com
Founder, TheServerSide.com
Author, EJB Design Patterns

Goals for this presentation

 Bring you up to date on important
news and trends, both technical and
cultural, that are affecting the
future of Java today and 2 years out

About Floyd Marinescu
 Wrote the book EJB Design

Patterns (2002, Wiley)

 Co-founder, CEO
InfoQ.com

 Designed, implemented,
and managed
TheServerSide.com J2EE
Community for 6 years

 Sun appointed Java
Champion

 I am

http://www.lifelinesys.ca/

About InfoQ.com
 Online News Site/Community for

senior developers, Team Leads,
Architects, Project Managers

 Mission: Tracking Change and
Innovation in Enterprise Software
Development

 250,000 unique visitors in Jan 2008,
launched June 2006

 Java, .NET, Ruby, SOA, Agile,
Architecture

 Chinese & Japanese Editions

 News, Free Books, Articles, Video
Presentations & Interviews

 Over 31 editors like you involved

Catch-up: The return of OO Development in Java

 J2EE development was not OO

• 1999-2004: Applications incorrectly designed around
remoting (EJB)

• Business logic moved into session beans instead of
domain objects

• Lack of ORM tools, persistent components over objects

• Mis-marketing by Sun (EJB), young inexperienced
developers

• The rise of web-based development (new problem
domain)

…The return of OO Development in Java

What has changed

• Dependency Injection, Aspects, Annotations

• Component market place never happened

• Lightweight POJO containers vs. appservers

• Object relational mapping now free and standardized

• Open source has fixed lacking issues in the specs

• JAVA EE 5 now supported by most appserver vendors

• The problem domain of web & server side Java
development is now well understood

Aspect Oriented Programming – Just beginning!

Refactor repeating (cross cutting) code into one
place

 Intercepting method calls, field calls, constructor calls

 Adding interfaces & implementation to existing Java
classes

OO = nouns and verbs, AO is the adverbs and
adjectives

Look for adverbs and adjectives in your
requirements

• a SecureBankAccount

• or a Secure BankAccount

…AOP

 Practical applications of AOP in use today:

• Transactions

• Security

• Event handling (replace observer pattern)

• Annotation Handling

• Exception Handling / Mapping

• Forcing a Singleton

• Instrumentation / Metrics recording / Diagnostics

• Testing your applications

• Assertions

• Architecture Enforcement

• Adding state and behavior / multiple inheritance alternative

• Logging

Domain
Annotations
viable due
to AOP?

Dependency Injection
 Refactor configuration and dependency code out of

business logic

 Inject dependencies into objects using plain java setter
or constructors
• As opposed to explicit look up, or explicit call backs

 A simple POJO with a setter for injection:
public class MovieListener {

private MovieFinder _finder;
public void setMovieFinder(MovieFinder finder) { _finder =
finder; }

...
}

 Already a mainstream trend – incorporated into the Java
specs too!

Foundations of todays application design

Community moving back to OO, POJO
applications

Dependency Injection, Aspects, and Annotations
the foundations of such a modern application
– Adrian Colyer

Declining importance of Java EE standards

 1998-2001: a fragmented and voluminous ecosystem
drove a need for standards - J2EE creates a market

 2001-2002: real project experience drives backlash to the
standards, need for more innovation

 2003+: Spring, Hibernate, light weight solutions. Key
programming models open source + portable vs.
standards based

 2000 – 2008: major appserver consolidation, now only
TWO VENDORS

Declining of importance of Java EE standards

 Do standards matter when there are only 2 vendors?

 Is lock-in a factor when using open source?

 Community-driven emergent standards via open source
vs. design by committee

 Portable runtimes vs. standard API’s

• Spring vs. J2EE, Apache vs. HTTP, Flash vs. Ajax

 IBM and BEA increasingly distant from J2EE, JCP

 Rod Johnson: the JCP is like the communist party

 OSGi the final ‘nail in the coffin’?

 Mainstream projects not so concerned about Java
standards anymore

Open Source is now mainstream

Used to be driven by developers (bottom up)

Now often being driven top down

Execs: ‘Open source more reliable’

Support and indemnity commonly available

Death of the in-house framework

Used to be psychology of standards use, now
psychology of portable framework reuse

Modularity: OSGi Service Platform

A specification of a service platform / component
model for Java (like an appserver)

Defines bundles(typically JAR files) that contain
• Java classes, Resources, Files, Metadata

Bundles are independent (eliminates inter-module
dependency problems), self-describing, dynamically
manageable (start/stop/install/uninstall)

 Ideal base for long running systems composed of
‘modules’
• IDE, Appserver, etc

An ideal micro-kernel architecture

OSGi ecosystem

OSGi Alliance
• Specs for runtime environments, traditionally embedded

Equinox
• Eclipse’s OSGi implementation and OSGi R4 reference impl

• One of many open source OSGi implementations

Eclipse – OSGi based for 5 years
• Eclipse RCP – needed open, modular, dynamic, modular

runtime

OSGI officially part of Java SE

• Sun developing competing JSR 277 – module
system for Java

OSGi – recent uses & stated benefits

 Oracle, BEA, IBM, JoNas appservers built on OSGi

 JBoss beginning a re-architecture

 Abobe Creative Suite

• Used for a plugin architecture like Eclipes

• Isolate dependencies beteween installed plugins

• Keep minimal components running (more efficient use
of system resources)

• dynamic loading and unloading of plug-ins on demand

• “The result is a smarter, leaner and faster application
that provides a better user experience. “

OSGi as an appserver

 Traditional Appserver:

• Server functionality packaged as WARS or part of the spec

• Isolation provided by WARs

• Installation/management at the granularity of WARS

- Jeff McAffer & Tom Watson

OSGi – the new appserver platform?
 Add specific server functions (ie: HTTP) as bundles, or add a

whole appserver as a bundle (ie: Jetty, Tomcat, WS)

 Install only what you need

 http://www.infoq.com/osgi - Jeff McAffer & Tom Watson

http://www.infoq.com/osgi

Trend: OSGi for application modularity

 OSGi can form the perfect base for componentization in
Java EE apps

 BPS (Toronto) is choosing it for their next re-
architecture:

• An interesting problem we have been struggling with for some time
now is how to run multiple versions of a service simultaneously, in the
same VM. The scenario is that two applications, A and B, have been
integrated with our application, C. After the initial deployment of C,
features are added to support the next release of A. Now the fun
starts, as we need to update our deployed application with the new
code, but without a server restart, and without breaking anything that
B depends on. OSGi helps us solve this type of problem through the
ability to dynamically provision and version software components
(bundles).

• The design center for OSGi matches our requirements: a lightweight,
in-process, service container framework with full lifecycle support

Java the Platform, not the Language
 Java has been successful as a platform

• Write once, run anywhere

 A Java-language only strategy is not sustainable

 The Java platform is no longer just Java

 Java = JVM + JDK = bytecode = Any language

 Java is becoming a host to other languages
• Groovy, Beanshell, VBScript (project Semplice), Javascript (project Phobos),

Ruby (JRuby)

 Lack of standards / stablility have prevented mass Java-enabled
scripting language adoption in the Java community

 Having multiple languages in Java will attract a wider audience
to Java, use best tool for the job

 Good strategy to increase mass Java adoption

Java as a platform for scripting languages

 Dynamically typed Scripting languages such as Groovy
becoming very popular

 Groovy combines features from languages like Python,
Ruby, Smalltalk, and Perl in a very Java-like syntax

 Designed to be quick and easy to use:

• Optional static typing

• Regular expressions, lists and maps are first class citizens

• Terse, light weight syntax

• Easily hook into system resources, especially the JDK!

 Groovy code compiles to Java .class files, and have
access to the JDK

• This is why Groovy got so popular

… Java as a platform for scripting languages

Developers can be more productive than in Java
when:

• IO/Data manipulation

• SQL scripting

• Gui prototyping

• Unit testing

• Batch/script processing – used on TSS as cron scripts

• Implementing actions in MVC web apps

• Workflow / Rules / Integration

• Build system, embedded in ant scripts

• Any non-OO, linear procedure

Groovy

a scripting language that runs in Java
• You can run it as an interpreted (uncompiled) scripting

language (allows changing source code at runtime)

• You can compile it into bytecode and mix it in with your
existing Java codebase

• You can have a Groovy script configured as a Spring Bean

Groovy Greatly Simplifies
• File I/O

• GPath – interact with XML as objects

• XML Builders – use objects to create XML

• SQL

• Groovlets (aka Servlets)

• Grails

Groovy – Turns this:

- Scott Davis

…Groovy: into this

• Easily allows DSLish syntax:

myAccount + 500.euros
myAccount - 200.dollars
myAccount << 500.euros
myACcount >> 500.euros

Ruby on Rails & the integrated stack

Bruce Tate: “For web-based apps on a relational
database where you control your own schema,
you'd be crazy not to consider Rails”

Reasons
• Integrated stack

• Removes the compile/deploy/debug cycle – just save and
reload

• Starting point – working crud app per table

• Reduced configuration – almost no XML

• Multi-purpose language

• Lots of people reporting 10x productivity enhancements

Ruby on Rails & the integrated stack

RoR early adoption indicators
• Defection of key java evangelists

• 20,000 purchases of Dave Thomas’ book

• 400+ messages in TSS thread makes it top 5 of all time

• Lots of noise in blogspace

• Outspoken, loyal community

• Consultants actually charging 30% less for Rails projects

Late adoption indicators such as job postings,
show little, but growing traction for Rails

Prediction – Rails was an opportunity for growth
in the Java community, not really a threat

JRuby brings Rails (and Ruby) to the JVM

Sept 2006 – Sun hires JRuby team

 JRuby aims to make Ruby run well on the JVM

Rails runs ‘well’ on JRuby right now

Deployment & performance a problem in the
Rails community, being addressed by Java

ThoughtWorks uses JRuby to deploy Rails apps
for their customers

• Easier to get their Rails app deployed a
customer sites!

 JRuby compiler coming soon (probably by June 2008)

Grails – Java fights back
 Grails provide a Rails-like environment that integrates

with existing Java infrastructure (via Groovy), and based
on Java idioms, best practices, and technologies

 Groovy-based integrated full-stack framework combining:

• Spring MVC, Hibernate, Quartz, SiteMesh, Compass, etc

• “just a Spring MVC application under the covers” – G.Rocher

 A number of commerical sites deployed Grails in 2007

 Impressive code generation

• Write some domain objects and generate a whole CRUD web
app and O/R mapping

• Or generate a web app from existing java entity beans

• Convention over configuration

 http://www.infoq.com/grails

Grails more “Enterprise” than Rails?

Easier to start using Grails in Java projects

• Integration with Spring, Hibernate

• Can build a Grails app around EJB3 / Hibernate POJOs

 IT/Operations people only see Java. No
additional work for them

Grails controllers use standard Servlet API
objects like request, response, session etc. and
can sit alongside other servlets (Graeme
Rocher)

More OO – no “domain models” in Rails

Browser-based applications (web 2.0)

 Enterprise User Interface evolution

• Dumb terminal

• Thick client / Client-Server / Fat Client

• Today’s standard: Thin client / HTML+HTTP / three tier

 Benefits of thin client / HTML based UI’s:

• Zero install

• Standard platform for hosting/viewing UI’s (the browser)

• Real time updating of application (pages served from the server)

 Problems with thin client / HTML UI’s:

• Lack of rich features available in the desktop worlds

• Stateless, request-response content-retrieval system

• Server maintains state, all operations need to go to the server

• Poor support for non-linear workflows

Web 2.0

Definition: Web 2.0 is the internet as an
application platform, as opposed to its previous
purpose as a publishing platform

 Browser/Standards based:

• AJAX – Asynchronous Java Script and XML

 Brower-installed rich client runtime based:

• Adobe Flash/Flex, Lazslo

• JavaFX

• Microsoft Silverlight

Java to make a comeback on the client?
 The initial Java Download Problem

 The Consumer JRE – focus on installation & deployment

• Quick run only small JRE kernel + what you need to
run your applet or webstart app

• Rest of JRE downloads in background after app start

• QuickStart – prefetch portions of JRE in memory to
decrease the average JRE start-up time after reboot

• Limewire starts up 3x faster – Chet Haase

 JavaFX Script, Designer and Developer Tools

• DSL for accessing rich UI features of the SE stack

 JavaFX Mobile

• entire OS + apps + apis written entirely in Java

Rich Client Revolution– Adobe Flex/Flash

Flash VM is ubiquitous – in every major browser,
on every major OS. As standard as AJAX

Flex – Adobe’s platform for rich browser based
app development that runs in the Flash VM

 June 2006 – Adobe makes Flex SDK free

Flex server side declarative model (JSP like)
• vector graphics, drawing APIs, rich media (video/audio)

• UI widgets and gui components

• dev tools such as SWF compilation, debugger

• Actionscript (javascript equivalent) for coding

• Native remoting to Java, or web services

Why Flex/Flash
 Performance

• Flex/Flash apps run as bytecode in the Flash VM using JIT

 Simplicity / Reliability
• No worries about browser compatibilities, browser DOM/JavaScript

irregularities, etc

 Expressiveness (vector graphics)
• Microsoft betting on this future with WPF/Avalon

 Real time (binary sockets and pub/sub messaging)

 Rich media (video and audio streaming)

 Adobe AIR – run web apps on the desktop

• local storage, desktop launchable client, etc

 Google, YouTube, InfoQ – making Flash even more widely
known

 http://infoq.com/flash

Future trend

Desktop & Browser apps merged

• Apps built with new browser runtimes
also run-able form the desktop

• Web apps with offline storage
 (e.g.: Google Reader, via Google Gears)

Most popular AJAX frameworks

 Java Community
• Prototype (35.2%), DWR (31.2%), and Dojo (28.6%). GWT

was at 7.2%. 22% do direct XMLHTTPRequest.

 .NET
• Prototype (32.4%), MS Atlas (27.2%), Dojo (17.6%),

AJAX.NET professional (14%). 37% do direct
XMLHTTPRequest.

Rails
• Prototype (74.8%), Dojo (20.2%). Interestingly, 67.2% use

Scriptaculous for effects. Only 16% do direct
XMLHTTPRequest.

Source: analysis and filtering of ajaxian survey

DOJO getting major industry traction

Dojo Toolkit
• Abstracts XMLHTTPRequest

• Javascript libraries and convenience utilities

• Rich DOM manipulation support

• Out of the box AJAX widgets

Sun backs DOJO – June 2006
• Contributing ajax widgets, helping with documentation

• Adding tooling for netbeans

 IBM backs DOJO – June 2006
• Donates i18n code

• Committed to making DOJO support accessibility

Multi-core & Parallelism

Single threaded performance to stagnate or
decline in future

8 core boxes to be come common and
commoditized (2 quad core cpus) for server
applications

Amdahl’s law: app speed limited by non-parallel
parts of your app. N tasks do not execute in 1/N
time

 Language Designers have acknowedged that we need
new language contructs:

• Fortress – research language at Sun

• IBM X10 – language artifacts for managing concurrent
operations and the distribution of data associated with
those operations.

• Parallel Extensions for .NET

 IO Performance may make up for loss

• New solid state drives show promising potential

 Virtualization

• Split a large box into more manageable sub-instances
and then cluster

…Multi-core – what is hbeing done about it?

Domain Driven Design – Eric Evans

 Principle of focusing on the domain

 Make the domain a reflection of real world concepts

 Collaborate with business owners to ensure a realistic
domain model

 Ubiquitous language

• A language structured around the domain model and used by all team
members to connect all activities the of the team with the software.

 model

• A system of abstractions that

 describes selected aspects of a domain

 and can be used to solve problems related

 to that domain.

Domain Driven Design – Why now?

5 year web learning curve over, web
technologies no longer ‘getting in the way’ of
domain logic

Software projects getting more complex

Agile practices emphasizing stakeholder
collaboration

 InfoQ DDD book 20,000 downloads

DDD is becoming an important buzzword in
2007 – it’s just starting now

Domain Specific Languages

Languages ‘useful for a specific set of tasks’, as
opposed to general purpose languages

Adding domain concepts to the language instead
of libraries/frameworks

DSLs should:
• Contain abstractions from the domain

• Be readable by business stakeholders

• Increase productivity and maintainability

DSLs

OO builds up a vocabulary

DSLs add the grammar

“this shift of moving from thinking about
vocabulary, which is objects, to the
notion of a language that combines
vocabulary and grammar.” (Ford, Fowler)

DSL Recent Discussions
 Design Patterns are a sign of language deficiency – Mark

Dominus
• Historically – abstractions defined in patterns have migrated to

languages (e.g.: Structs, Objects, Iterators)

• “Instead of seeing the use of design patterns as valuable in itself, it
should be widely recognized that each design pattern is an expression
of the failure of the source language. “

 DSLs are a bad idea because they do not do a good job
controlling change over time. - Buko Obele
• “the expressive power of a language is not the measure of a

language's ability to model a problem domain, it's rather the ability of
the language to control changes in the problem domain. “

• DSL’s only good for static, non-changing domains

The end of the single language projects?
Neal Ford & Martin Fowler: Polyglot programming

 “...will see multiple languages used in projects with people
choosing a language for what it can do in the same way that
people choose frameworks now” Martin

Embedding DSLs instead of using libraries

 Fowler asserts that "larger frameworks like Hibernate, Struts,
ADO present as much of a challenge to learn as a language even
if you program them in a single host language.“

What’s different this time vs. 1980:

 Interoperability between languages on the JVM/CLR minimizes
‘silo risk’.

Web services and Service Oriented Architecture
 Web services being used pragmatically – far below the

initial hype

 SOA – everyone talking about it – few realizing it’s full
potential

 What is SOA?
• SOA is an architectural style that encourages the creation of loosely

coupled business services

• Loosely coupled services that are interoperable and technology-
agnostic enable business flexibility

• A SOA solution consists of a composite set of business services that
realize an end-to-end business process

• Each service provides an interface/contract-based service description
to support flexible and dynamically re-configurable processes

- John Reynolds

…The truth about SOA

 Few are actually doing SOA, most simply using web
services:

1. We connect fat .Net clients to Java application servers (and
use soap in between)
2. We connect to some ASP (like Amazon, SF.com, etc.)
3. We front ended some legacy system with services.

 – Jeff Schneider

 Most applying the 3+N pattern

• Three tier application using web services to talk to N external
services – this is not service composition

 When services are “composed” into wider business
processes, then you have an example of SOA

 We are seeing successes with SOA – notably amazon

SOA

 IT/Business Alignment – the only thing ‘NEW’
about SOA

SOA cannot succeed as an IT initiative, it must
start from the business down

First define the services that bring business
value, then figure out the technology stack

Agile SOA approaches

Governance the biggest challenge with SOA –
not technology

ESBs – messaging, routing, transformation

Future Importance of EJB Uncertain

3 high-level categories of EJB benefits
• Framework Benefits – Security, Transactions,Pooling,

packaging/deployment
• Distribution Benefits – It’s the way to do distributed

communication
• Component Benefits

Where the community has been going:
• Framework - POJO’s via the three foundations: AOP + Dependency

Injection + Annotations
• Distribution – POJO’s with remoting as an aspect, lightweight

remoting frameworks, web Services
• Components – Who cares? The Enterprise Component Market is

dead

So what about EJB 3?

Quick Poll:
How are
people
using
EJB?

Emerging Economies and Open Source

Emerging economies will further open source

Case study: Brazil
• Government mandate to use open source, and multi-platform

software. Linux and Java seen as core to national interest.

• Building their own open source JVM called JAVALI

• Freedom from vendor lock-in important on a national scale

• Guarantees they will have the rights to use it in the
future

Apache Harmony

Open source JVM and JDK

Goals:
• create a compatible, independent implementation of J2SE 5

under the Apache License v2

• create a community-developed modular runtime (VM and
class library) architecture to allow independent
implementations to share runtime components, and allow
independent innovation in runtime components

Brought together some of the best minds on
JVM’s to contribute

Apache Harmony – Why?
 An open source implementation can survive if Sun / vendors stop

supporting Java

 Distribution rights – Linux and FreeBSD & more availability for
Java

 Ability to ship custom JVM’s with an application
• Eg: JVM’s with custom features, or ship apps with parts of JVM’s (2meg exe

file, or 100KB JAR that needs the JRE?)

 “enables collaboration in the parts of technology that are
common to all”… letting organizations focus on things that add
value on top of the common – Geir Magnusson

 Risks
• A project of this scale is no easy matter

• Other similar projects (Geronimo) proceeding slowly, so might this

• Forking Java

 Apache Harmony – Current Status

Enough of the class library to run Ant and the
Eclipse compiler

A standard interface for plugging any JVM into a
class library

Major contributions from IBM and Intel

Future in question due to Sun open sourcing
Java

Open Source Java

Sun finally open sources Java

OpenJDK
• Currently has: HotSpot JVM, javac

• Buildable JDK to be added in Q1 2007

 Java ME, and Glassfish also GPLv2

Governance and Licensing are two key aspects

Open source Java licensing & compatibility

GPLv2

Makes Java open source while forcing any
modifications to also be open source under GPL
(minimizing chances of forks)

 Java Compatibility – can’t call it Java unless:
• passes the TCK

• Get copyright clearance from Sun

 Java applications are NOT derivative works of
GPL’d Java

Open Source Java - Governance

Governance issues
• Who has ultimate control – Sun or the community?

• Who decides on commits?

• Shared copyrights (which is the case now but wasn’t before)

Open source Java Impact

On developer day to day: not much

Linux greater Linux Adoption
• Tim Bray: Hopes Java becomes UI technology of choice on

Linux

Government adoption / emerging economies

New technical use cases for Java possible, but
GPL may limit commercial innovation

New open source business models

 JBoss – pioneer, validated by RedHat purchase

Simula labs – VC focused on open source

 Interface21, numerous others

Gluecode software – IBM buys Gluecode

Terrracotta

Marc Fleury’s take
 “the power of the model rests in the extremely low cost

of distribution and sales. We reach millions of folks with
free distribution and then monetize this base. It is a very
efficient way to acquire customers. The result is that we
spend 30 cents for every dollar of maintenance revenue,
while the competition, on average, spends $3 for every
dollar that ultimately comes in as maintenance. The
downside, compared to proprietary software, is that on
average we only monetize 3% of our user base for JBoss
and roughly 10% for Linux. This low cost of sales we
achieve through mass distribution is what makes the
model tick. The customer gets to make up his own mind
as to whether the software is any good as opposed to
having to go through the vendor’s pricey and biased
salesforce. “

Casestudy: Terracotta
 a JVM clustering solution that can turn single-node, multi-

threaded apps into distributed, multi-node apps with no
code changes

 Viable, cool product

 How the VC’s were convinced:
• 80% of installs of Terracotta were in environments that were mixed

with open source

• Proof-of-concept-eval process for commercial license too complex –
barrier to adoption

 Model:
• Greater return per-customer after 5 years of support contracts

compared to upfront license

• Must have quality support services to keep a 5 year subscription

• Must have order of magnitude more customers

• Focus on delivering value

What’s left for commercial models?
 Open source software is increasingly standardizing more

complex infrastructures

 Open source also enabling commercial models
• Release open source version to build a qualified customer base you can

then upsell to enterprise versions.

• Everybody is doing it – IBM, Adobe, Sun, and numerous smaller
players

 Opportunities for commercial firms
• High end, large scale (Websphere XD, BEA Tuxedo)

• Niche tools – vertical specific, highly specialized

• Anything ahead of the open source curve

 Open source will ensure that there are many more
software development jobs, but perhaps less
opportunities for product companies

Questions / final

 InfoQ’s mission is to track change and
innovation in the Enterprise Software
Development Community

We hope you use the site, help us spread the
word!

Want to write an article? Email
editors@infoq.com

