

Securing Ruby and Rails

Cliff Moon
Chariot Solutions

The Routing Vulnerability

●Handling
● Good Points

● Patches were implemented very quickly.
● Prompt notification of the community.
● The core team responded to users' concerns.
● No widely reported compromised applications.

● Bad Points
● The 1.1.5 release did not completely fix the problem.
● The 1.1.6 release broke Engines.
● Full disclosure was not made right away.
● SQL Injection red-herring in the SVN diffs.

The Routing Vulnerability

●Vulnerability in routing.rb
● Attacker may run virtually any script within rails_root via url

manipulation.
● Denial of service.
● Data corruption.

Application Level Vulnerabilities

●SQL Injection
● Input is not escaped before being added to query strings.
● Can cause data corruption, unauthorized access, and privilege

escalation.
● Use bound parameters, hash-type where clauses, or find_by_xxx.

Application Level Vulnerabilities

●Parameter Injection
● Tamper Data plugin
● ActiveRecord::Base#new(@params) and

ActiveRecord::Base#update(@params)
● attr_protected – marks an attribute as being unassignable via params

hash, therefore it must be assigned explicitly.
● attr_accessible – does the opposite of attr_protected.

Application Level Vulnerabilities

●Cross-Site Scripting
● Most cases are caused by rendering unlaundered text into an HTML

page.
● sanitize - strips javascript, script tags, and form tags from the input.
● strip_tags - strips out all HTML tags from the input.
● textilize & markdown \u2013 formats using BlueCloth and RedCloth,

respectively.

Security Plugins

●AgileWebDevelopment.com
● Large repository of security oriented plugins.
● All manner of authentication and access control plugins.
● Security plugins help enforce rules in a DRY manner.

Security Plugins

●Raccess
● Rule based system for filtering access to model objects.
● acts_as_filterable – marks a model class as having access rules

applied to it
● invisible_if :method?, visible_if :method? - access control rules are

evaluated in order of appearence: the last one to evaluate as true will
determine visibility.

● ActiveRecord::Base#security_ignore() - wraps a block in which
access rules will be ignored.

● http://rubyforge.org/projects/raccess

Security Plugins

●User Authentication
● script/generate authenticated user account
● Generates a login and authentication system including migrations,

model, view, and controller logic.
● Can add access control filters to controllers to DRY up login and role

based access checks.
● Can generate user activation mailings.
● Docs include examples for adding password changing, reversible

encrypted passwords, remember me checkbox, and many other
modifications.

Questions?

Any questions, concerns, misgivings, or bad feelings?

