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Where were you when...
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And later...
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And don't forget...
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And they keep coming...
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And yet...

AJAX applications use technologies 
that have been around for years.

All that's been missing is vision.
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Agenda

 What is AJAX?
 Top 10 AJAX Sightings
 Top 10 AJAX Problems
 Popular Tools
 Popular Frameworks
 Where to Learn More
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What is AJAX?
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An Acronym?

 Asynchronous
 Calls are made asynchronously with XMLHttpRequest
 Doesn't hang browser or interrupt user

 JavaScript
 Old CW: Toy or Pest
 New CW: Powerful dynamic language

 And
 and... lots of other stuff that doesn't get star billing
 e.g. CSS and DHTML

 XML
 Can request/retrieve semantic XML data
 (Text/HTML snippets are more common in practice)
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A Design Philosophy?

 AJAX applications do not...
 reload the entire page to change one part
 limit users to a small set of HTML input widgets
 block user activity while waiting for a server response
 let pages get stale in between page loads

 AJAX applications do...
 load a lot of data in the first page request (usually)
 frequently fetch snippets to update parts of the page
 push useful information to the user
 provide flexible user input controls

 AJAX applications feel...
 responsive
 fresh
 productive
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A Promised Land?

 All the richness of desktop applications
 Complex input widgets
 Immediate feedback
 Drag and drop
 Animations
 Sub-second response time

 All the power of web applications
 Easy, cross-platform deployment
 Instant updates across entire install base
 Graphic design power and flexibility
 Easy integration with other web applications
 Server-side security and stability
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10 lines of JavaScript Magic?

xhr = new XMLHttpRequest();

function getMessage(){

   xhr.onreadystatechange=displayMessage;

   xhr.open("GET", "/getMessage”);

   xhr.send(null);

}

function displayMessage() { 

   msg = xhr.responseText;

   document.getElementById(“messageBox”).value=msg;

}

...

<input id=”messageBox” type=”text” />

<input type=”button” value=”Get” onclick=”getMessage();” />
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100 lines of JavaScript Hell?

var xhr;

try {

   xhr = new ActiveXObject("Msxml2.XMLHTTP");

} catch (e) {

   try {

      xhr = new ActiveXObject("Microsoft.XMLHTTP");

   } catch (e) {

      xhr = false;

   }

}

if (!xhr && typeof XMLHttpRequest != 'undefined') {

   xhr = new XMLHttpRequest();

}

...
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The Reality

 “AJAX” now means more than just remoting
 DOM manipulation
 CSS magic
 DHTML
 Compound effects
 Rich user experience

 Great tool for taking webapps to the next level 
 Simple frameworks mitigate JavaScript pain
 Easy to use just a little in a regular webapp
 Building a completely AJAX-based app is a lot 

like building a rich desktop client, with 
JavaScript as the implementation language
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Top 10 AJAX Sightings
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Auto-Complete

 When to use it?
 Cascading select boxes
 Dynamic search boxes
 Auto-population of related or dependent form fields
 Tab completion in form fields

 How does it work?
 XHR sent to server from onkeypress, onblur, onchange
 Results returned and used to populate other form fields 

or a floating div with values that can be selected
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Drill Down

 When to use it?
 Email-like interfaces with list and preview pane
 Wherever users can browse lists and drill down on items

 How does it work?
 XHR sent to server from onclick or onkeypress
 Results returned and used to populate drilldown area
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Pop-up Control Panels

 When to use them?
 Sidebars with controls that aren't always needed
 Advanced search drop down from simple search field
 Buttons that bring up useful options for current item

 How do they work?
 Hidden div contains control panel
 During onclick, it is positioned and made visible
 User can interact, sometimes triggering XHRs
 Some mechanism is provided to close the panel
 Often, sliding effects are used during open/close
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Drag and Drop

 When to use it?
 Content scheduling applications
 List reordering
 Shopping carts
 Portlet rearrangement

 How does it work?
 Easiest to use a JavaScript framework
 Register draggable items and drop targets
 Mouse listeners are registered for draggable items
 Drag is accomplished by moving during mouse events
 On mouse up, position is checked against known drop 

targets
 If recognized, XHR is triggered to tell the server
 Otherwise, animation used to revert draggable item
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Instant Validation

 When to use it?
 Displaying error if username is already taken
 Displaying format errors
 Expanding alternatively formatted input

 How does it work?
 Similar to auto-complete
 XHR triggered either onkeypress or onblur
 Non-blocking error is displayed next to field if 

necessary
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Status Indicators

 When to use them?
 Long-running operations (e.g. searching flights)
 File uploads
 Dashboards and countdowns that need to sync with server
 Any asynchronous call that might take a few seconds

 How do they work?
 User triggers some sort of long-running operation
 XHR is sent and animation is made visible
 When response is received, animation is stopped
 In more complex scenarios, the page may use client-side or 

server-side timers to periodically update a value (e.g. percent 
complete)
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User Profiling

 When to use it?
 Storing display decisions (e.g. table vs. thumbnails)
 Tracking time spent on each page
 Tracking which fields cause forms to be abandoned
 Gathering usability statistics

 How does it work?
 User actions that adjust the page display issue a small 

XHR to a preference service that stores the decision in 
the user's profile for future reference

 Javascript timers are used to periodically send a 
heartbeat XHR to the server, which can be used to track 
time spent

 XHR can be sent on every form field transition to track 
how much time is spent and understand usability 
characteristics
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Virtual Space

 When to use it?
 Map services (e.g. GoogleMaps)
 Any application with image zoom features
 Very large graphs or images

 How does it work?
 Image data or graph is broken up into tiles
 Current visible tile IDs stored in JavaScript array
 Large div is nested within a smaller one with overflow 

clipped
 Inner div displays visible tiles in a grid
 On every drag, grid is moved and visible tiles are 

updated (via XHR requests) if necessary
 Requires some prefetching and cleanup
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User Notifications

 When to use them?
 Long-running process has finished or has errors
 New item or message has arrived
 Another user is working in the same area of the app

 How do they work?
 Page contains fixed-position, invisible message area
 JavaScript timer used to periodically wake up and poll 

server with XHRs
 Resulting messages are displayed to the user in the 

message area until user chooses to clear them or 
timeout is reached

 User may be allowed to interact with message using 
pop-up control panel
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Visual Effects

 When to use them?
 Call attention to a successful AJAX action
 Animate addition or deletion of page elements
 Highlight recently added or modified page elements
 Provide smooth animations for complex DHTML widgets

 How do they work?
 Timed JavaScript sequence begins which alters size, 

position, color, visibility and other style attributes
 Usually hidden away in Effects framework
 Need to take care to handle failed requests
 Need to eventually fade away any highlighting
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Top 10 AJAX Problems
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No Feedback

 Problem:
 User triggers remote actions without realizing it
 Not sure if actions “took” on the server
 May make duplicate requests
 May accidentally interrupt a long-running action

 Solution:
 Display a discreet but consistent animation whenever 

there is a pending XHR
 Use effects libraries to signal successful outcomes

 Pulsate a drop target
 Display a brief message that fades away
 Highlight a newly added page element

 Be sure to display error messages for failed requests



28 Copyright 2005 Chariot Solutions

Can't Deep Link

 Problem:
 Large sections of content are updated without a page load
 Search spiders will only ever see the initial content
 Users can't send links to friends
 Users can't bookmark content
 Difficult to link from one part of the app to another

 Solution:
 Use explicit page loads for important transitions
 Support both incremental updates and full page entrypoints
 Provide links to let users get a permanent URL
 Provide links to let users email URLs to other people
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Broken Back Button

 Problem:
 Enthusiastic AJAX apps may have only one full page load
 User is used to using the back/forward buttons to navigate
 May accidentally back out of the app, losing all page state

 Solution:
 Take steps to support deep linking (see previous slide)
 Use a framework with great cross-browser back button 

support (e.g. Dojo)
 Significant browser differences here
 Don't bother implementing this yourself
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Violating User's Web Expectations

 Problem:
 Form data saved without submit, and users don't realize that
 Lots of individually scrollable regions within a scrollable page
 Broken back button, bookmarks, etc.
 Inconsistent DHTML versions of standard form controls
 Pauses at unexpected times

 Solution:
 Be explicit about forms/controls that save automatically
 Be consistent throughout the application
 Use popular frameworks for effects, widgets, etc. so that 

users are more likely to recognize them
 Exercise moderation
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Violating User's Rich Client Expectations

 Problem:
 AJAX application has replaced conventional desktop app
 Looks like a desktop app (e.g. Outlook)
 Doesn't support common rich client features

 Undo and Redo
 Auto-save
 Warning when trying to close unsaved documents

 User is lured into false sense of security, loses data

 Solution:
 Implement undo, redo, auto-save and close warnings
 Ensure that back button won't take user out of the app
 Ensure that links won't open in same tab, replacing the app
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Ignoring Errors

 Problem:
 User does something that triggers remote action
 XHR times out or returns failure code
 User thinks action succeeded
 Page is mangled or gets out of sync with server

 Solution:
 Check HTTP status code on responses, not just ready state
 Write error routines for catch clauses and bad return codes
 Don't display success effects until XHR returns – just display 

some sort of progress indicator
 Develop a consistent and obvious way of indicating failure 

(error messages, red highlighting, etc.)
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Inconsistent Freshness

 Problem:
 One part of the page is constantly polling the server and 

updating itself
 Another part is static until the next full page refresh
 Confusing to users
 Data can be inconsistent

 Solution:
 Don't mix static data and dynamic data – choose one
 Don't forget to update more than one part of the page if the 

same data is repeated in several places
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Not Degrading Gracefully

 Problem:
 Some functionality is only available through AJAX
 Users with incompatible browsers are left out in the cold

 Solution:
 Provide a plain HTML way of achieving every basic use case
 Test with JavaScript turned off
 Test in older browsers
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Too Many Connections

 Problem:
 Dashboard pages may have 20 status indicators polling the 

server
 Browsers limit the number of simultaneous connections
 Risk of conflicting changes to the DOM
 Risk of annoying slowdowns

 Solution:
 Be conscious of how many connections you're likely to use
 Queue status requests and execute in sequence, or as one 

combined call
 Use different callbacks for any simultaneous requests so that 

you can update the right status indicators
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DOM Explosion

 Problem:
 XHR results are stored in DOM without removing old 

information
 Dynamic page elements are created for every use and just 

hidden when no longer needed

 Solution:
 Remove elements from the DOM when you're done with them
 Reuse pop-up divs, status indicators, message boxes, etc.
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Popular Tools
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Live Source Viewers

 We rely on “View Source” to debug normal 
webapps
 Not very pretty
 Doesn't help when JavaScript is dynamically 

inserting/removing content

 Get a tool that can translate the current DOM 
model to a source view

 Check out these Firefox extensions:
 View Rendered Source Chart
 View Formatted Source

 Also, try Ctrl-A and then “View Selection 
Source” to get syntax-highlighted live 
source view
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Firefox Plugin:
View Rendered Source Chart
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Firefox Plugin: 
View Formatted Source
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DOM Inspectors

 Must have for browser-based JavaScript 
development

 Navigate the entire DOM tree
 View properties of each element
 See how CSS styles are being computed
 Check out:

 Firefox's built-in DOM Inspector (in Tools Menu)
 Safari Debug Menu and Web Inspector (enable first!)
 Internet Explorer Developer Toolbar and DOM 

Inspector
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Firefox DOM Inspector
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Safari Web Inspector
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Internet Explorer DOM Inspector
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JavaScript Debuggers

 Every AJAX app is going to have a lot of 
JavaScript

 Browsers – particularly non-Mozilla 
browsers – make debugging difficult

 No easy way to log debug information in a 
way that survives a page reload 

 Check out:
 Venkman JavaScript Debugger
 MyEclipse JavaScript Debugger (and other AJAX Tools)
 Microsoft Script Debugger



46 Copyright 2005 Chariot Solutions

JavaScript Debuggers - Venkman
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JavaScript Debuggers - MyEclipse
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Popular Frameworks
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Framework Flavors

 Specialized JavaScript Libraries
 Remoting, Effects, Drag and Drop, DHTML Components
 Can be mixed and matched

 Comprehensive JavaScript Libraries
 Provide most of the functionality above and more
 Clean interface between server-side and client-side

 Language-Specific JavaScript Wrappers
 Convenient helpers/macros for hiding JavaScript details
 Great for adding small AJAX features to webapps
 Still JavaScript/DOM-based at heart

 Language-Specific AJAX Implementations
 Not dependent on externally developed JS libraries
 Can expose language features to JavaScript layer
 Can integrate well with existing web frameworks
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AJAX Styles – Fragment Response

 How does it work?
 XHR returns text or HTML snippet
 This is used to replace the contents of a page element
 Sometimes called “DOM Replacement”

 Advantages
 Really easy to program
 Re-uses initial rendering code
 Minimal JavaScript (framework does everything)
 Less Processing

 Disadvantages
 May use more bandwidth
 Not as easy to re-use generic web services
 Difficult to update several different parts of the page
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AJAX Styles – Semantic Response

 How does it work?
 XHR returns XML or JSON data
 JavaScript interprets this and updates individual page 

elements

 Advantages
 Minimizes bandwidth
 Reusable across different applications
 Easy to update different parts of the page

 Disadvantages
 XML requires parsing, which is more intensive
 Different approaches for initial render vs. update
 Lots of app-specific JavaScript
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AJAX Styles – Script Response

 How does it work?
 XHR returns JavaScript
 JavaScript is executed and modifies DOM structure

 Advantages
 Minimal JavaScript in pages
 Easy to take advantage of main implementation language to 

track DOM, manage updates, etc.

 Disadvantages
 Fragile if mixed with other JavaScript libraries that manipulate 

the DOM
 Intimately tied to page structure – difficult to reuse



53 Copyright 2005 Chariot Solutions

Popular Frameworks – DOJO

 General-purpose JavaScript Toolkit 
 Massive and comprehensive, including

 JavaScript utility libraries
 DOM/CSS manipulation
 Event libraries
 Collections
 Remoting
 JSON support
 XML Parsing
 Widgets
 WYSIWIG Text Editor
 Effects
 Drag and Drop
 Validation
 Graphics manipulation
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Popular Frameworks – Prototype

 General-purpose JavaScript Library
 Provides some basic JavaScript convenience 

methods
 e.g. ${foo} instead of document.getElementById('foo')

 Provides basic AJAX functionality
 Remoting
 Periodic updates
 JSON evaluation

 Lightweight and easily integrated with other 
JavaScript libraries
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Popular Frameworks – Rico

 JavaScript-based AJAX Library
 Based on Prototype
 Provides basic AJAX functionality

 Remoting
 Drag and Drop
 Effects (including Rounded Corners)
 Widgets (including Accordion and LiveGrid)

 Favors DOM Replacement
 Lightly wrapped in XML
 Supports updating more than one page element from a 

single response

 Lightweight and easily integrated with other 
JavaScript libraries
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Popular Frameworks – Script.aculo.us

 Multi-purpose JavaScript Library
 Based on Prototype
 Supports remoting
 Favors DOM replacement
 Supports drag and drop
 Includes large library of effects

 Basic transforms and distortions
 Compound effects like “1 second spotlight”

 Developed alongside and distributed with 
Ruby on Rails

 Plays nicely with other JavaScript libraries
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Popular Frameworks – Ruby on Rails

 Ruby-based web framework 
 Wraps Script.aculo.us JavaScript Libraries

 Remoting
 Effects
 Drag and Drop

 Supports DOM replacement
 Supports Script Response (RJS Templates)
 Possible to upgrade underlying JS libraries, 

but not always compatible
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Popular Frameworks - AjaxTags

 Java-based AJAX framework
 Attempts to shield developers from almost 

all JavaScript
 Custom JSP tags for things like:

 autocomplete
 callout
 DOM replacement
 cascading selects
 cascading field updates

 Integrates effects for progress indicators
 Great for sprinkling AJAX, not full-fledged
 Not to be confused with the Struts AJAXTags 

project, which is now part of Java Web Parts
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Popular Frameworks - DWR

 DWR = Direct Web Remoting
 Java-based AJAX framework
 Acts a lot like RMI, giving access to server-

side Java classes from client-side JavaScript 
code

 Favors semantic response style
 Adds convenience

 Responses come back as objects, not XML
 Utility methods for things like updating a set of options 

based on an array

 Very popular
 Integrated with leading Java frameworks 

(Struts, Tapestry, Spring, JSF...)
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Where to Learn More
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Resources

 Books
 Pragmatic AJAX (Manning, 2006)
 AJAX Design Patterns (O'Reilly, 2006)
 AJAX in Action (Manning, 2005)

 Sites
 AjaxPatterns.org – great catalog of AJAX techniques
 AlistApart.com – hotbed of CSS/DHTML design innovation
 W3Schools.com – tutorials on HTML, CSS, JavaScript
 Ajaxian.com – blog and news site devoted to AJAX
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Chariot Training

 Ready for more than a one-hour presentation?
 Chariot Solutions offers in-depth team training on 

AJAX and many other technologies
 Content can be tailored to fit your needs

 Master level for experienced teams, allowing shorter training 
time or greater depth

 Introductory level for teams who are less experienced with 
advanced JavaScript, CSS and HTML

 In-depth coverage of 2-3 frameworks based on:
 your implementation language (e.g. Java, Ruby, LAMP)
 your AJAX goals (e.g. usability, enabling complex user interfaces)

 Includes hands-on AJAX development exercises
 Follow-on mentoring, review, implementation and 

support services are available

For more information, contact:
Tracey Welson-Rossman
(215) 358-1780 x456
twr@chariotsolutions.com

mailto:twr@chariotsolutions.com
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We hope you enjoyed 
these slides!

Did you miss the Emerging Tech conference?

Download other great presentations at:
www.chariotsolutions.com

http://www.chariotsolutions.com/

