
Copyright 2005 Chariot Solutions

Practical AJAX
by Erin Mulder

Philadelphia Emerging Technology Conference

March 2006

2 Copyright 2005 Chariot Solutions

Where were you when...

3 Copyright 2005 Chariot Solutions

And later...

4 Copyright 2005 Chariot Solutions

And don't forget...

5 Copyright 2005 Chariot Solutions

And they keep coming...

6 Copyright 2005 Chariot Solutions

And yet...

AJAX applications use technologies
that have been around for years.

All that's been missing is vision.

7 Copyright 2005 Chariot Solutions

Agenda

 What is AJAX?
 Top 10 AJAX Sightings
 Top 10 AJAX Problems
 Popular Tools
 Popular Frameworks
 Where to Learn More

Copyright 2005 Chariot Solutions

What is AJAX?

9 Copyright 2005 Chariot Solutions

An Acronym?

 Asynchronous
 Calls are made asynchronously with XMLHttpRequest
 Doesn't hang browser or interrupt user

 JavaScript
 Old CW: Toy or Pest
 New CW: Powerful dynamic language

 And
 and... lots of other stuff that doesn't get star billing
 e.g. CSS and DHTML

 XML
 Can request/retrieve semantic XML data
 (Text/HTML snippets are more common in practice)

10 Copyright 2005 Chariot Solutions

A Design Philosophy?

 AJAX applications do not...
 reload the entire page to change one part
 limit users to a small set of HTML input widgets
 block user activity while waiting for a server response
 let pages get stale in between page loads

 AJAX applications do...
 load a lot of data in the first page request (usually)
 frequently fetch snippets to update parts of the page
 push useful information to the user
 provide flexible user input controls

 AJAX applications feel...
 responsive
 fresh
 productive

11 Copyright 2005 Chariot Solutions

A Promised Land?

 All the richness of desktop applications
 Complex input widgets
 Immediate feedback
 Drag and drop
 Animations
 Sub-second response time

 All the power of web applications
 Easy, cross-platform deployment
 Instant updates across entire install base
 Graphic design power and flexibility
 Easy integration with other web applications
 Server-side security and stability

12 Copyright 2005 Chariot Solutions

10 lines of JavaScript Magic?

xhr = new XMLHttpRequest();

function getMessage(){

 xhr.onreadystatechange=displayMessage;

 xhr.open("GET", "/getMessage”);

 xhr.send(null);

}

function displayMessage() {

 msg = xhr.responseText;

 document.getElementById(“messageBox”).value=msg;

}

...

<input id=”messageBox” type=”text” />

<input type=”button” value=”Get” onclick=”getMessage();” />

13 Copyright 2005 Chariot Solutions

100 lines of JavaScript Hell?

var xhr;

try {

 xhr = new ActiveXObject("Msxml2.XMLHTTP");

} catch (e) {

 try {

 xhr = new ActiveXObject("Microsoft.XMLHTTP");

 } catch (e) {

 xhr = false;

 }

}

if (!xhr && typeof XMLHttpRequest != 'undefined') {

 xhr = new XMLHttpRequest();

}

...

14 Copyright 2005 Chariot Solutions

The Reality

 “AJAX” now means more than just remoting
 DOM manipulation
 CSS magic
 DHTML
 Compound effects
 Rich user experience

 Great tool for taking webapps to the next level
 Simple frameworks mitigate JavaScript pain
 Easy to use just a little in a regular webapp
 Building a completely AJAX-based app is a lot

like building a rich desktop client, with
JavaScript as the implementation language

Copyright 2005 Chariot Solutions

Top 10 AJAX Sightings

16 Copyright 2005 Chariot Solutions

Auto-Complete

 When to use it?
 Cascading select boxes
 Dynamic search boxes
 Auto-population of related or dependent form fields
 Tab completion in form fields

 How does it work?
 XHR sent to server from onkeypress, onblur, onchange
 Results returned and used to populate other form fields

or a floating div with values that can be selected

17 Copyright 2005 Chariot Solutions

Drill Down

 When to use it?
 Email-like interfaces with list and preview pane
 Wherever users can browse lists and drill down on items

 How does it work?
 XHR sent to server from onclick or onkeypress
 Results returned and used to populate drilldown area

18 Copyright 2005 Chariot Solutions

Pop-up Control Panels

 When to use them?
 Sidebars with controls that aren't always needed
 Advanced search drop down from simple search field
 Buttons that bring up useful options for current item

 How do they work?
 Hidden div contains control panel
 During onclick, it is positioned and made visible
 User can interact, sometimes triggering XHRs
 Some mechanism is provided to close the panel
 Often, sliding effects are used during open/close

19 Copyright 2005 Chariot Solutions

Drag and Drop

 When to use it?
 Content scheduling applications
 List reordering
 Shopping carts
 Portlet rearrangement

 How does it work?
 Easiest to use a JavaScript framework
 Register draggable items and drop targets
 Mouse listeners are registered for draggable items
 Drag is accomplished by moving during mouse events
 On mouse up, position is checked against known drop

targets
 If recognized, XHR is triggered to tell the server
 Otherwise, animation used to revert draggable item

20 Copyright 2005 Chariot Solutions

Instant Validation

 When to use it?
 Displaying error if username is already taken
 Displaying format errors
 Expanding alternatively formatted input

 How does it work?
 Similar to auto-complete
 XHR triggered either onkeypress or onblur
 Non-blocking error is displayed next to field if

necessary

21 Copyright 2005 Chariot Solutions

Status Indicators

 When to use them?
 Long-running operations (e.g. searching flights)
 File uploads
 Dashboards and countdowns that need to sync with server
 Any asynchronous call that might take a few seconds

 How do they work?
 User triggers some sort of long-running operation
 XHR is sent and animation is made visible
 When response is received, animation is stopped
 In more complex scenarios, the page may use client-side or

server-side timers to periodically update a value (e.g. percent
complete)

22 Copyright 2005 Chariot Solutions

User Profiling

 When to use it?
 Storing display decisions (e.g. table vs. thumbnails)
 Tracking time spent on each page
 Tracking which fields cause forms to be abandoned
 Gathering usability statistics

 How does it work?
 User actions that adjust the page display issue a small

XHR to a preference service that stores the decision in
the user's profile for future reference

 Javascript timers are used to periodically send a
heartbeat XHR to the server, which can be used to track
time spent

 XHR can be sent on every form field transition to track
how much time is spent and understand usability
characteristics

23 Copyright 2005 Chariot Solutions

Virtual Space

 When to use it?
 Map services (e.g. GoogleMaps)
 Any application with image zoom features
 Very large graphs or images

 How does it work?
 Image data or graph is broken up into tiles
 Current visible tile IDs stored in JavaScript array
 Large div is nested within a smaller one with overflow

clipped
 Inner div displays visible tiles in a grid
 On every drag, grid is moved and visible tiles are

updated (via XHR requests) if necessary
 Requires some prefetching and cleanup

24 Copyright 2005 Chariot Solutions

User Notifications

 When to use them?
 Long-running process has finished or has errors
 New item or message has arrived
 Another user is working in the same area of the app

 How do they work?
 Page contains fixed-position, invisible message area
 JavaScript timer used to periodically wake up and poll

server with XHRs
 Resulting messages are displayed to the user in the

message area until user chooses to clear them or
timeout is reached

 User may be allowed to interact with message using
pop-up control panel

25 Copyright 2005 Chariot Solutions

Visual Effects

 When to use them?
 Call attention to a successful AJAX action
 Animate addition or deletion of page elements
 Highlight recently added or modified page elements
 Provide smooth animations for complex DHTML widgets

 How do they work?
 Timed JavaScript sequence begins which alters size,

position, color, visibility and other style attributes
 Usually hidden away in Effects framework
 Need to take care to handle failed requests
 Need to eventually fade away any highlighting

Copyright 2005 Chariot Solutions

Top 10 AJAX Problems

27 Copyright 2005 Chariot Solutions

No Feedback

 Problem:
 User triggers remote actions without realizing it
 Not sure if actions “took” on the server
 May make duplicate requests
 May accidentally interrupt a long-running action

 Solution:
 Display a discreet but consistent animation whenever

there is a pending XHR
 Use effects libraries to signal successful outcomes

 Pulsate a drop target
 Display a brief message that fades away
 Highlight a newly added page element

 Be sure to display error messages for failed requests

28 Copyright 2005 Chariot Solutions

Can't Deep Link

 Problem:
 Large sections of content are updated without a page load
 Search spiders will only ever see the initial content
 Users can't send links to friends
 Users can't bookmark content
 Difficult to link from one part of the app to another

 Solution:
 Use explicit page loads for important transitions
 Support both incremental updates and full page entrypoints
 Provide links to let users get a permanent URL
 Provide links to let users email URLs to other people

29 Copyright 2005 Chariot Solutions

Broken Back Button

 Problem:
 Enthusiastic AJAX apps may have only one full page load
 User is used to using the back/forward buttons to navigate
 May accidentally back out of the app, losing all page state

 Solution:
 Take steps to support deep linking (see previous slide)
 Use a framework with great cross-browser back button

support (e.g. Dojo)
 Significant browser differences here
 Don't bother implementing this yourself

30 Copyright 2005 Chariot Solutions

Violating User's Web Expectations

 Problem:
 Form data saved without submit, and users don't realize that
 Lots of individually scrollable regions within a scrollable page
 Broken back button, bookmarks, etc.
 Inconsistent DHTML versions of standard form controls
 Pauses at unexpected times

 Solution:
 Be explicit about forms/controls that save automatically
 Be consistent throughout the application
 Use popular frameworks for effects, widgets, etc. so that

users are more likely to recognize them
 Exercise moderation

31 Copyright 2005 Chariot Solutions

Violating User's Rich Client Expectations

 Problem:
 AJAX application has replaced conventional desktop app
 Looks like a desktop app (e.g. Outlook)
 Doesn't support common rich client features

 Undo and Redo
 Auto-save
 Warning when trying to close unsaved documents

 User is lured into false sense of security, loses data

 Solution:
 Implement undo, redo, auto-save and close warnings
 Ensure that back button won't take user out of the app
 Ensure that links won't open in same tab, replacing the app

32 Copyright 2005 Chariot Solutions

Ignoring Errors

 Problem:
 User does something that triggers remote action
 XHR times out or returns failure code
 User thinks action succeeded
 Page is mangled or gets out of sync with server

 Solution:
 Check HTTP status code on responses, not just ready state
 Write error routines for catch clauses and bad return codes
 Don't display success effects until XHR returns – just display

some sort of progress indicator
 Develop a consistent and obvious way of indicating failure

(error messages, red highlighting, etc.)

33 Copyright 2005 Chariot Solutions

Inconsistent Freshness

 Problem:
 One part of the page is constantly polling the server and

updating itself
 Another part is static until the next full page refresh
 Confusing to users
 Data can be inconsistent

 Solution:
 Don't mix static data and dynamic data – choose one
 Don't forget to update more than one part of the page if the

same data is repeated in several places

34 Copyright 2005 Chariot Solutions

Not Degrading Gracefully

 Problem:
 Some functionality is only available through AJAX
 Users with incompatible browsers are left out in the cold

 Solution:
 Provide a plain HTML way of achieving every basic use case
 Test with JavaScript turned off
 Test in older browsers

35 Copyright 2005 Chariot Solutions

Too Many Connections

 Problem:
 Dashboard pages may have 20 status indicators polling the

server
 Browsers limit the number of simultaneous connections
 Risk of conflicting changes to the DOM
 Risk of annoying slowdowns

 Solution:
 Be conscious of how many connections you're likely to use
 Queue status requests and execute in sequence, or as one

combined call
 Use different callbacks for any simultaneous requests so that

you can update the right status indicators

36 Copyright 2005 Chariot Solutions

DOM Explosion

 Problem:
 XHR results are stored in DOM without removing old

information
 Dynamic page elements are created for every use and just

hidden when no longer needed

 Solution:
 Remove elements from the DOM when you're done with them
 Reuse pop-up divs, status indicators, message boxes, etc.

Copyright 2005 Chariot Solutions

Popular Tools

38 Copyright 2005 Chariot Solutions

Live Source Viewers

 We rely on “View Source” to debug normal
webapps
 Not very pretty
 Doesn't help when JavaScript is dynamically

inserting/removing content

 Get a tool that can translate the current DOM
model to a source view

 Check out these Firefox extensions:
 View Rendered Source Chart
 View Formatted Source

 Also, try Ctrl-A and then “View Selection
Source” to get syntax-highlighted live
source view

39 Copyright 2005 Chariot Solutions

Firefox Plugin:
View Rendered Source Chart

40 Copyright 2005 Chariot Solutions

Firefox Plugin:
View Formatted Source

41 Copyright 2005 Chariot Solutions

DOM Inspectors

 Must have for browser-based JavaScript
development

 Navigate the entire DOM tree
 View properties of each element
 See how CSS styles are being computed
 Check out:

 Firefox's built-in DOM Inspector (in Tools Menu)
 Safari Debug Menu and Web Inspector (enable first!)
 Internet Explorer Developer Toolbar and DOM

Inspector

42 Copyright 2005 Chariot Solutions

Firefox DOM Inspector

43 Copyright 2005 Chariot Solutions

Safari Web Inspector

44 Copyright 2005 Chariot Solutions

Internet Explorer DOM Inspector

45 Copyright 2005 Chariot Solutions

JavaScript Debuggers

 Every AJAX app is going to have a lot of
JavaScript

 Browsers – particularly non-Mozilla
browsers – make debugging difficult

 No easy way to log debug information in a
way that survives a page reload

 Check out:
 Venkman JavaScript Debugger
 MyEclipse JavaScript Debugger (and other AJAX Tools)
 Microsoft Script Debugger

46 Copyright 2005 Chariot Solutions

JavaScript Debuggers - Venkman

47 Copyright 2005 Chariot Solutions

JavaScript Debuggers - MyEclipse

Copyright 2005 Chariot Solutions

Popular Frameworks

49 Copyright 2005 Chariot Solutions

Framework Flavors

 Specialized JavaScript Libraries
 Remoting, Effects, Drag and Drop, DHTML Components
 Can be mixed and matched

 Comprehensive JavaScript Libraries
 Provide most of the functionality above and more
 Clean interface between server-side and client-side

 Language-Specific JavaScript Wrappers
 Convenient helpers/macros for hiding JavaScript details
 Great for adding small AJAX features to webapps
 Still JavaScript/DOM-based at heart

 Language-Specific AJAX Implementations
 Not dependent on externally developed JS libraries
 Can expose language features to JavaScript layer
 Can integrate well with existing web frameworks

50 Copyright 2005 Chariot Solutions

AJAX Styles – Fragment Response

 How does it work?
 XHR returns text or HTML snippet
 This is used to replace the contents of a page element
 Sometimes called “DOM Replacement”

 Advantages
 Really easy to program
 Re-uses initial rendering code
 Minimal JavaScript (framework does everything)
 Less Processing

 Disadvantages
 May use more bandwidth
 Not as easy to re-use generic web services
 Difficult to update several different parts of the page

51 Copyright 2005 Chariot Solutions

AJAX Styles – Semantic Response

 How does it work?
 XHR returns XML or JSON data
 JavaScript interprets this and updates individual page

elements

 Advantages
 Minimizes bandwidth
 Reusable across different applications
 Easy to update different parts of the page

 Disadvantages
 XML requires parsing, which is more intensive
 Different approaches for initial render vs. update
 Lots of app-specific JavaScript

52 Copyright 2005 Chariot Solutions

AJAX Styles – Script Response

 How does it work?
 XHR returns JavaScript
 JavaScript is executed and modifies DOM structure

 Advantages
 Minimal JavaScript in pages
 Easy to take advantage of main implementation language to

track DOM, manage updates, etc.

 Disadvantages
 Fragile if mixed with other JavaScript libraries that manipulate

the DOM
 Intimately tied to page structure – difficult to reuse

53 Copyright 2005 Chariot Solutions

Popular Frameworks – DOJO

 General-purpose JavaScript Toolkit
 Massive and comprehensive, including

 JavaScript utility libraries
 DOM/CSS manipulation
 Event libraries
 Collections
 Remoting
 JSON support
 XML Parsing
 Widgets
 WYSIWIG Text Editor
 Effects
 Drag and Drop
 Validation
 Graphics manipulation

54 Copyright 2005 Chariot Solutions

Popular Frameworks – Prototype

 General-purpose JavaScript Library
 Provides some basic JavaScript convenience

methods
 e.g. ${foo} instead of document.getElementById('foo')

 Provides basic AJAX functionality
 Remoting
 Periodic updates
 JSON evaluation

 Lightweight and easily integrated with other
JavaScript libraries

55 Copyright 2005 Chariot Solutions

Popular Frameworks – Rico

 JavaScript-based AJAX Library
 Based on Prototype
 Provides basic AJAX functionality

 Remoting
 Drag and Drop
 Effects (including Rounded Corners)
 Widgets (including Accordion and LiveGrid)

 Favors DOM Replacement
 Lightly wrapped in XML
 Supports updating more than one page element from a

single response

 Lightweight and easily integrated with other
JavaScript libraries

56 Copyright 2005 Chariot Solutions

Popular Frameworks – Script.aculo.us

 Multi-purpose JavaScript Library
 Based on Prototype
 Supports remoting
 Favors DOM replacement
 Supports drag and drop
 Includes large library of effects

 Basic transforms and distortions
 Compound effects like “1 second spotlight”

 Developed alongside and distributed with
Ruby on Rails

 Plays nicely with other JavaScript libraries

57 Copyright 2005 Chariot Solutions

Popular Frameworks – Ruby on Rails

 Ruby-based web framework
 Wraps Script.aculo.us JavaScript Libraries

 Remoting
 Effects
 Drag and Drop

 Supports DOM replacement
 Supports Script Response (RJS Templates)
 Possible to upgrade underlying JS libraries,

but not always compatible

58 Copyright 2005 Chariot Solutions

Popular Frameworks - AjaxTags

 Java-based AJAX framework
 Attempts to shield developers from almost

all JavaScript
 Custom JSP tags for things like:

 autocomplete
 callout
 DOM replacement
 cascading selects
 cascading field updates

 Integrates effects for progress indicators
 Great for sprinkling AJAX, not full-fledged
 Not to be confused with the Struts AJAXTags

project, which is now part of Java Web Parts

59 Copyright 2005 Chariot Solutions

Popular Frameworks - DWR

 DWR = Direct Web Remoting
 Java-based AJAX framework
 Acts a lot like RMI, giving access to server-

side Java classes from client-side JavaScript
code

 Favors semantic response style
 Adds convenience

 Responses come back as objects, not XML
 Utility methods for things like updating a set of options

based on an array

 Very popular
 Integrated with leading Java frameworks

(Struts, Tapestry, Spring, JSF...)

Copyright 2005 Chariot Solutions

Where to Learn More

61 Copyright 2005 Chariot Solutions

Resources

 Books
 Pragmatic AJAX (Manning, 2006)
 AJAX Design Patterns (O'Reilly, 2006)
 AJAX in Action (Manning, 2005)

 Sites
 AjaxPatterns.org – great catalog of AJAX techniques
 AlistApart.com – hotbed of CSS/DHTML design innovation
 W3Schools.com – tutorials on HTML, CSS, JavaScript
 Ajaxian.com – blog and news site devoted to AJAX

62 Copyright 2005 Chariot Solutions

Chariot Training

 Ready for more than a one-hour presentation?
 Chariot Solutions offers in-depth team training on

AJAX and many other technologies
 Content can be tailored to fit your needs

 Master level for experienced teams, allowing shorter training
time or greater depth

 Introductory level for teams who are less experienced with
advanced JavaScript, CSS and HTML

 In-depth coverage of 2-3 frameworks based on:
 your implementation language (e.g. Java, Ruby, LAMP)
 your AJAX goals (e.g. usability, enabling complex user interfaces)

 Includes hands-on AJAX development exercises
 Follow-on mentoring, review, implementation and

support services are available

For more information, contact:
Tracey Welson-Rossman
(215) 358-1780 x456
twr@chariotsolutions.com

mailto:twr@chariotsolutions.com

Copyright 2005 Chariot Solutions

We hope you enjoyed
these slides!

Did you miss the Emerging Tech conference?

Download other great presentations at:
www.chariotsolutions.com

http://www.chariotsolutions.com/

