
Probative Programming
Toward the physical unification of code

and tests

David A. Black
Director
Ruby Power and Light, LLC
http://www.rubypal.com
dblack@rubypal.com

Emerging Technologies for the Enterprise
March 26-27, 2009
Copyright © 2009, Ruby Power and Light, LLC

About me

• Programming in Ruby since 2000
• Ruby/Rails consultant and trainer

– Ruby Power and Light, LLC (rubypal.com)
• A director of Ruby Central
• Author of

– Ruby for Rails (2006)
– The Well-Grounded Rubyist (imminent!)
– Rails Choices (working title; 2009/2010)

But enough about me....

Broad outline

• The problem
• The consequences of the problem
• Ideas for dealing with the problem
• Demonstrations:

– Literate Programming
– Cucumber
– Probative Programming (using Cucumber)

I.

The problem:

Testing is optional

Testing

• A vital practice
– with a profound technical problem

 It is possible not to test;
 therefore, people don't.

Compare with...

• installing software tools (you have to)
• running interpreter/compiler (you have

to)
• setting up permissions for your team

(you have to)
• etc. (you have to...)

Black's Law
As long as testing is optional, there will
be untested code.

Black's Other Law
Technical problems respond to technical
solutions, not to peer pressure.

II.

The
consequences

The consequences

• Technical
– untested code
– ummm, more untested code

• Social
– pressure
– cajoling
– bragging rights
– unpleasantness

Show us your testes!

Where are your testes?

You do have testes,
 don't you?

Very tiresome.

P.S. It doesn't work.

τεκνος, not ηθική*

• The problem is technical, not ethical
• No non-technical solution is adequate

– not cajoling
– not bragging
– not "No pain, no gain" mantras

* Pace people who actually know Greek

Whatever happened to...

Two out of three IS
(are?) bad...

Only two of the following can be
true:

¶ Programming is fun
¶ Testing is not fun
¶ Programming should include lots
of testing

III.

The solution (I think, maybe):

Probative Programming

pro'-ba-tive

prove

probe

probable

proof

prüfen

probare
1. serving or designed for test or trial
2. affording proof or evidence

(Random House Dictionary)

The solution to untested code

• Change the flow of energy
• No more muscle flexing
• No more displays of grit
• Let the gravity of the process do its

work

The "what"

• A file containing code and tests
– not executable

• A processor/tester
– applied to file
– runs tests
– iff successful, generates code files

The what?!

• Code does not exist until tests pass
• Not running tests no longer an option
• Creates a technical system for ensuring

test coverage
– taking it out of the realm of willpower

Realign the axes of energy....

Before...

...After!

Or, a little more technically...

Inspiration:
Literate Programming

• Knuth, 1984
• Goal: combine a programming

language and a formatting language
– typically ((C or Pascal) and TeX)

• Code and documentation in one file
– not code, not documentation
– contains the potential for both

Literate Programming...

...does not mean just writing lots of comments

...does not mean just having documentation
strings

...is not the same as executable specs
(it's not a spec/test technology)

...quite radically changes what it means to
engage in the act of writing a program

Literate programming

• Example

Goal of Probative
Programming

• Similar to literate programming (in my
dreams....)
– shift the center of gravity
– instead of code wrapped in tests, both

together
– possibly not even view the code files

The how

• Example, using Cucumber

This is how cucumber works.....

Wrap-up

• The problem is technical
• The solution has to be technical
• It's not about strength of character

