
Copyright 2007 Obie Fernandez (All Rights Reserved)

Rails 
Controllers 
and Routing
Obie Fernandez
Prepared exclusively for 
RubyEast 2007



Copyright 2007 Obie Fernandez (All Rights Reserved)

The controller layer is what 
really sets Rails apart from 
everyone else.

Like any computer program, your Rails application involves the flow of control from one part 
of your code to another. The flow of program control gets pretty complex with Rails 
applications. There are many bits and pieces in the framework, many of which execute each 
other. And part of the framework’s job is to figure out, on the fly, what your application files 
are called and what’s in them, which of course varies from one application to another.

ActiveRecord can stand on its own and often does, and ActionView is to a large degree just a 
lot of fanciness on top of Ruby’s built-in templating system, ERb.



Copyright 2007 Obie Fernandez (All Rights Reserved)

The Dispatcher

Rails is used to build Web-based applications, so before anything else happens, and for anything that does happen, a Web server[md]Apache, Lighttpd, Nginx, and so on
[md]handles a request. The server then forwards that request to the Rails application, where it is handled by the dispatcher.



Copyright 2007 Obie Fernandez (All Rights Reserved)

Request Handling
Web server provides request info

Http method (e.g. GET, POST)

URI (e.g. “demo/index”)

Parameters (if any)

The dispatcher’s job is to:

Figure out which controller and action to execute

Load the controller file and instantiate the controller

Invoke the requested action

When a request comes in, the server interacts with the Rails dispatcher and gives it the URI 
and parameters to work with...

All of this happens quickly, behind the scenes. It’s unlikely that you would ever need to dig 
into the source code for the dispatcher; it’s the sort of thing that you can take for granted to 
just work. 



Copyright 2007 Obie Fernandez (All Rights Reserved)

Demo

We’ll create a demo rails app

Tweak one of the views

Fire up script/console

Manually trigger a dispatch



Copyright 2007 Obie Fernandez (All Rights Reserved)

The Controller



Copyright 2007 Obie Fernandez (All Rights Reserved)

When in Doubt, Render
Rails doesn’t need an explicit controller action if 
there is a template that matches the request

What you learn from seeing the empty action is that, at the end of every controller action, if 
nothing else is specified, the default behavior is to render the template whose name matches 
the name of the controller and action. In this case, that means app/views/demo/index.rhtml.

In other words, every controller action has an implicit render command in it. And render is 
actually a real method. You could write the preceding example like the code shown.

You don’t have to, though, because it’s assumed that that’s what you want, and that is part 
of what Rails people are talking about when they discuss convention over configuration. 
Don’t force the developer to add code that could simply be assumed by convention.



Copyright 2007 Obie Fernandez (All Rights Reserved)

Many Kinds of render

render :action => ‘new’

render :template => ‘abuse/report’

render :file => ‘/shared/templates/global.html.erb’

render :partial => ...

render :inline => “<%= auto_complete_result(...)”

render :text, :json, :xml

render :nothing => true, :status => 401



Copyright 2007 Obie Fernandez (All Rights Reserved)

Rendering Options

:content_type

:layout

:status

All content flying around the web is associated with a MIME type2. For instance, HTML content 
is labeled with a content-type of text/html. However, there are occasions where you want to 
send the client something other than HTML. Rails doesn’t validate the format of the MIME 
identifier you pass to the :content_type option, so make sure it is valid.

By default, Rails has conventions regarding the layout template it chooses.

The HTTP protocol includes many standard status codes3 indicating a variety of conditions in 
response to a client’s request. Rails will automatically use the appropriate status for most 
common cases, such as 200 OK for a successful request.



Copyright 2007 Obie Fernandez (All Rights Reserved)

Preventing 
Double 
Renders
Make sure to return from 
the controller action if you 
render or redirect.



Copyright 2007 Obie Fernandez (All Rights Reserved)

Controller/View 
Communication
There’s a bit of irony and possible confusion in 
the choice of instance variables to share data 
between the controller and view templates.

The main reason that instance variables exist is so that objects (whether Controller objects, 
String objects, and so on) can hold on to data that they don’t share with other objects. 

When the view template is rendered, the context is that of a different object, an instance of 
ActionView::Base. That instance has its own instance variables, and does not have access to 
those of the controller object.

So instance variables, on the face of it, are about the worst choice for a way for two objects to 
share data. However, it’s possible to make it happen[md]or make it appear to happen. What 
Rails does is to loop through the controller object’s variables and, for each one, create an 
instance variable for the view object, with the same name and containing the same data.

If you’re a Ruby purist, you might wince a little bit at the thought of instance variables serving 
to connect objects, rather than separate them. On the other hand, being a Ruby purist should 
also include understanding the fact that you can do lots of different things in Ruby[md]such 
as copying instance variables in a loop. So there’s nothing really un-Ruby-like about it. And it 
does provide a seamless connection, from the programmer’s perspective, between a 
controller and the template it’s rendering.



Copyright 2007 Obie Fernandez (All Rights Reserved)

Controller Filters
Macro-style pre and post processing



Copyright 2007 Obie Fernandez (All Rights Reserved)

Multiple Filters
A real-world example



Copyright 2007 Obie Fernandez (All Rights Reserved)

Loading Data in a Filter
Contentious Issue

Some of us like to use before filters to load the records for single-record operations, where 
there is some kind of complex logic. Instance variables set in a filter are of course available to 
any actions.
This is a contentious issue; some developers believe that database actions should stay out of 
filters and be specified in the action method.



Copyright 2007 Obie Fernandez (All Rights Reserved)

Filter Inheritance	
Shared with Subclasses



Copyright 2007 Obie Fernandez (All Rights Reserved)

Filter Classes	
Reuse common filter functionality



Copyright 2007 Obie Fernandez (All Rights Reserved)

Routing

The routing system in Rails is the system that examines the URL of an incoming request and 
determines what action should be taken by the application. And it does a good bit more than 
that. Rails routing can be a bit of a tough nut to crack. But it turns out that most of the 
toughness resides in a small number of concepts. Once you’ve got a handle on those, the 
rest falls into place nicely.



Copyright 2007 Obie Fernandez (All Rights Reserved)

Two Purposes of Routing

Recognizes URLs so that the right controller and action 
can be invoked

Constructs URLs for you for use as arguments to 
methods like link_to, redirect_to, and form_tag



Copyright 2007 Obie Fernandez (All Rights Reserved)

Routing Rules

Written in Ruby code

Stored in config/routes.rb

Consist of a name, match pattern and parameters

Added in priority-descending order



Copyright 2007 Obie Fernandez (All Rights Reserved)

Bound Parameters
“Hardcoded route”

The :controller and :action keys are bound: This route, when matched by a URL, will always 
take the visitor to exactly that controller and that action. 



Copyright 2007 Obie Fernandez (All Rights Reserved)

Wildcard Parameters
You can think of them as “receptors”



Copyright 2007 Obie Fernandez (All Rights Reserved)

Static Strings
Anchor the route

The “activate” string anchors the recognition process. When the routing system sees a URL 
that starts /activate, it will match that to the static string in the activate route. Any URL that 
does not contain the static string “activate” in the leftmost slot will not match this route.



Copyright 2007 Obie Fernandez (All Rights Reserved)

The Ante-Default Route
Works with respond_to in the controller



Copyright 2007 Obie Fernandez (All Rights Reserved)

The Empty Route
Works with respond_to in the controller

You’re usually safe leaving the default route alone. But there’s another route in routes.rb that 
plays something of a default role and you will probably want to change it: the empty route.

The empty route says, “I don’t want any values; I want nothing, and I already know what 
controller and action I’m going to trigger!



Copyright 2007 Obie Fernandez (All Rights Reserved)

Route Globbing
The greediest route

In some situations, you might want to grab one or more components of a route without 
having to match them one by one to specific positional parameters. For example, your URLs 
might reflect a directory structure. If someone connects to


