
104/05/07

AOP System Development:
Accomplishing More with Less

Presented by:

Andrew Oswald
Chariot Solutions

aoswald@chariotsolutions.com

204/05/07

AOP System Development -- Agenda

• What is Aspect-Oriented Programming?
• High level system requirements.
• Can Object-Oriented systems be improved upon?
• How do we know what has been done and/or is

happening in our system?
• Does it work? Is it extensible, maintainable, etc.?
• What's left?
• Wrap up – meet me for a beer (or two) at the

reception...

304/05/07

AOP System Development -- Agenda

• What is Aspect-Oriented Programming?
• High level system requirements.
• Can Object-Oriented systems be improved upon?
• How do we know what has been done and/or is

happening in our system?
• Does it work? Is it extensible, maintainable, etc.?
• What's left?
• Wrap up – meet me for a beer (or two) at the

reception...

404/05/07

What is Aspect-Oriented Programming?

• “In software engineering, the programming
paradigms of aspect-oriented programming
(AOP), and aspect-oriented software
development (AOSD) attempt to aid programmers
in the separation of concerns, specifically cross-
cutting concerns, as an advance in
modularization. AOP does so using primarily
language changes, while AOSD uses a
combination of language, environment, and
method.” -- wikipedia.org

504/05/07

What is a cross-cutting concern?

• “In computer science, cross-cutting concerns, or
crosscutting concerns, are aspects of a program
which affect (crosscut) other concerns. These
concerns often cannot be cleanly
decomposed from the rest of the system in
both the design and implementation, and result
in either scattering or tangling of the program, or
both.” -- wikipedia.org

604/05/07

AOP System Development -- Agenda

• What is Aspect-Oriented Programming?
• High level system requirements.
• Can Object-Oriented systems be improved upon?
• How do we know what has been done and/or is

happening in our system?
• Does it work? Is it extensible, maintainable, etc.?
• What's left?
• Wrap up – meet me for a beer (or two) at the

reception...

704/05/07

System Requirements

• Technology conference
• Conference has participants

• Name
• Email

• Conference has speakers
• Summary

• Speakers have sessions
• Title
• Abstract

• Store information for subsequent use
• Some kind of User Interface

804/05/07

System Architecture

• Java will be used to develop the domain model.
• Business Logic
• Security
• Logging
• Transactions
• Persistence
• Performance

• A database will be used to store the information.
• A browser will be used for the User Interface.

Yawn... “you're telling me this is emerging?”

904/05/07

AOP System Development -- Agenda

• What is Aspect-Oriented Programming?
• High level system requirements.
• Can Object-Oriented systems be improved

upon?
• How do we know what has been done and/or is

happening in our system?
• Does it work? Is it extensible, maintainable, etc.?
• What's left?
• Wrap up – meet me for a beer (or two) at the

reception...

1004/05/07

Can Object-Oriented systems be improved?

• After analyzing the system's requirements, we've
got several cross-cutting concerns.

• “Aspectual decomposition” to the rescue.
• Architecture – emerging:

• In order to address inherent OO req't. to implementation
redundancy (tangling/scattering), AspectJ will also be used to
develop the domain model.

• Objects and Relational databases require mapping... We need to
get this app into production “yesterday”. In order to expedite
delivery (with a nice side effect of better performance), the
relational DB and ORM will be replaced with an Object DataBase
(DB4O).

• Continuing with our lazy, er, I mean emerging approach, Stripes
will be used as the MVC framework.

1104/05/07

System Aspectual Decomposition

• Can AOP wire together an entire application so
that its components retain their (clearly)
visible/understandable role(s)?
• In an MVC, procuring and providing the “M” is an aspect. Can this

be done in an elegant manner?
• In a system with persistence capability, persistence of the domain

without the objects' knowledge (aka, transparent) is an aspect.
Can this be done in an elegant, non-intrusive, timely manner?

1204/05/07

Stripes – a lazy, er, emerging web framework.

• Takes advantage of naming conventions,
annotations, and various reflection mechanisms.

• Out-of-box wiring of urls to views (in an
ActionBean):
• package naming: web, stripes, www, and action
• ActionBean impls: removes “Action” or “Bean” or “ActionBean”
• converts above info into a path and appends “.action”
• @UrlBinding annotation may be used

• Very powerful binding and validation capability!
• Very nice out-of-box JSP tags.
• @HandlesEvent and reflection handling discovery

1304/05/07

Db4o – can this be real? An object database?

• “Embed db4o's native Java and .NET open
source object database engine into your product
and store even the most complex structures with
only one line of code.” -- db4o.com

• Open source and free under the GPL

1404/05/07

AOP System Development -- Agenda

• What is Aspect-Oriented Programming?
• High level system requirements.
• Can Object-Oriented Programming be improved

upon?
• How do we know what has been done and/or

is happening in our system?
• Does it work? Is it extensible, maintainable, etc.?
• What's left?
• Wrap up – meet me for a beer (or two) at the

reception...

1504/05/07

Code scattering and tangling.

• Stripes requires ActionBeans to implement
ActionBean... (at least it's not extension)
• get/setContext
• hold onto ActionBeanContext for subsequent reuse

• For URL mapping, it's either via annotation or
naming, or the fact that the class implements
ActionBean
• does your package structure fall under one of the naming

conventions?
• is your package structure representative of a RESTful url?

1604/05/07

Person POJO screenshot:

1704/05/07

PersonActionBean screenshot:

1804/05/07

Aspectual Decomposition: POJO to ActionBean adaptation

• Implement “ActionBean”
• Keep the passed in ActionBeanContext for

subsequent re-use.
• Provide “event” methods so the class actually

performs something.
• In light of our naming convention not falling under

Stripes' out-of-box qualifiers, provide a
@UrlBinding annotation.

1904/05/07

“Introducing” “static crosscutting”

• Artist formerly known as “Introduction” now known
as “Inter-type” (although “introduction” was still
freely tossed around at AOSD '07)

• Provides static enhancements to a class or
classes:
• implement an interface (in this case, ActionBean)
• provide methods (get/setActionBeanContext(...))
• provide member(s) (private ActionBeanContext abc;)
• provide annotation(s)(!!!!!) (@UrlBinding(“/Person.action”))

• Presenter's opinion: “introduction” is still more
easily digestible to newcomers...

2004/05/07

First aspect: StripesActionBeannes

2104/05/07

So we've got some funny new stuff in the gutter...

•
•
•
•
•
•
• Gutter decorations and AJDT's “Cross

References” view!
• We can see that our inter-type declarations have

been applied to the “AspectActionBean”. Sooo...

2204/05/07

StripesActionBeanness (continued)

• ...what about declaring that a domain object
implements “AspectActionBean”?

2304/05/07

StripesActionBeanness (continued)

• ...and what about that @UrlBinding type
annotation?

2404/05/07

More Advisement/Declaration Visualization

• AJDT offers the “Aspect Visualization”
perspective.

• Presenter's opinion: this perspective can give you
a good “big picture” view, but beware that aspect
“precedence” isn't necessarily shown as it
executes at runtime!

2504/05/07

Yet even more Aspect Identification...

• AJDoc: the AspectJ documentation tool
• available via command line tool
• available from within AJDT
• Presenter's opinion: this tool acts flaky on my Linux machine –

YMMV..

• AJBrowser: gui for compiling and navigating
crosscutting structure

• Presenter's opinion: I stick w/ AJDT for basically
everything.

2604/05/07

Back to the system....

• So via inter-type declarations, we've made the
Conference class into an ActionBean. This
seems like overkill, doesn't it. Why yes, requiring
every domain object have its own inter-type
AspectActionBean parent is ugly. Fortunately,
AspectJ offers wildcarding for cases like these...

• In our system, all classes in the “domain”
package should be ActionBeans (if you're thinking
this sounds like an “exposed domain model”,
you're correct). Let's see the enhanced
declaration:

2704/05/07

Accomplishing More with Less: AspectJ's wildcards

• Declaring all classes in the domain package to
implement AspectActionBean couldn't be easier –
just replace the “domain.Conference” with
“domain.*”!

• This raises the question: “how do I keep track of
advisement deltas?”

• Again, AJDT to the rescue.. let's take a look.

2804/05/07

Monitoring holistic “advisement deltas”

• As you can imagine, the change from
domain.Conference to domain.* is very
significant! The “Crosscutting Comparison” view
can show us what's been changed:

2904/05/07

Holistic “advisement deltas” (continued)

• AJDT also offers the capability to take
Crosscutting Map “snapshots” of the current
codebase in order to do comparisons. As far as
I'm aware, this is only available through AJDT (no
ANT or Maven). Nevertheless, it's very good info!

• To save a Crosscutting Map, simply right click on
an AspectJ project and follow AspectJ Tools >
Save Crosscutting Map As...

3004/05/07

Back to Stripes..

• During system startup, Stripes introspects
ActionBeans for methods that:
• return a “Resolution”
• have a @DefaultHandler annotation
• have a @HandlesEvent annotation

• At least at this point, our system's “event”
requirements are quite meager – create, read,
and update the domain.

• If you're thinking this looks like another job for
inter-type declarations, you're right! Let's take a
look..

3104/05/07

ActionBean event handlers via inter-type.

3204/05/07

Introducing... the “pointcut”

• “A pointcut is used to select “join points”. It acts
as a filter, matching join point that meet its
specification, and blocking all others.” -- [Colyer –
eclipse AspectJ]

• “A join point is any identifiable execution point in a
system.” -- [Laddad – AspectJ in Action]

• So in the case of the pointcuts in the
StripesActionBeanEventHandling aspect, the
view(), update(), and save() method executions
are the join points. (yes, even methods declared
via inter-type can be used in a pointcut!)

3304/05/07

So now that we've filtered our events via pointcuts...

• “Pointcuts match join points, but advice is the
means by which we specify what to do at those
join points.” -- [Colyer – eclipse AspectJ]

• AspectJ has three kinds of advice:
• before – works before the specified pointcut's join point(s)
• after – works after the specified pointcut's join point(s)
• around – works before and after and sometimes in place of the

specified pointcut's join point(s) --- more on this to come!

• Let's take a look...

3404/05/07

StripesActionBeanEventHandling aspect's advice.

3504/05/07

A look at our DataStore interface.

• The save() event's execution's advice simply calls
dataStore.save(bean). Let's take a look at the
interface:

3604/05/07

DataStore (continued)

• And the Db4oDataStore:

3704/05/07

But how do the respective aspects get a DataStore?

• To generically “announce” that an aspect (or
class) needs a DataStore, it simply needs to
implement the “NeedsDataStore” interface:

3804/05/07

DataStore procurement (continued)

• Based on that interface, if you were thinking the
DataStore gets supplied via dependency
injection, you'd be correct.

• To supply DataStore implementations, we simply
advise “NeedsDataStore” impl (the “+”)
construction:

3904/05/07

And the actual implementation (w/ IDE cues)..

4004/05/07

(Very) Brief introduction to Db4o

• Easy to install – just put the respective (Java 5 or
otherwise) .jar in your classpath.

• A couple configurations should get you started:
• specify what classes should “cascade on activation”
• specify what classes should “cascade on delete”

• ObjectContainer and its more powerful version
ExtObjectContainer are the interfaces you'll use
over 99% of the time.

• Db4o cache is by weak reference.
• Db4o stores an ID for every object stored –

obtainable via ExtObjectContainer.getID(object);

4104/05/07

(Very) Brief introduction to Db4o (continued)

• Objects can be retrieved via their Db4o id – this is
an extremely fast way to query. However,
objects retrieved in this manner aren't necessarily
guaranteed to be fully hydrated:
ExtObjectContainer.getByID(long).

• To hydrate objects retrieved via getByID, simply
call ExtObjectContainer.activate(object).

• As you may have guessed, transient members
are not persisted.

4204/05/07

Back to Stripes..

• So now we can transparently get hydrated
objects, what advantage does this pose?

• We can bind directly into our “exposed domain
model”!

• Stripes examples on the web talk of using hooks
and the framework itself offers a very handy
Interceptor architecture.

• The concept for both, in this case, is the same: if
the request, specifically, the RequestContext,
contains an ID, attempt to retrieve the object,
otherwise, it's an insert (or error).

4304/05/07

Stripes Binding (continued)

• In the Stripes execution lifecycle, binding always
occurs before event execution.

• Can I replace “hook” or Interceptor
implementation with an aspect? Absolutely, but
this will entail a new concept - “binary weaving”.

• Binary weaving involves creating pointcuts that
qualify for code in previously existing jars.

• At compile time, the third party jar(s) contents are
examined and where applicable, in essence, the
pointcuts qualify, appropriate advice is “woven”.

4404/05/07

Binary weaving in AJDT

• On a project that has the AspectJ nature
associated, right click on the project and select
AspectJ Tools > Configure AspectJ Build Path...

• For this system, we need to weave advise into the
Stripes jar – enter its contents into the “Inpath”
tab:

4504/05/07

AJDT binary weaving of the Stripes jar (continued)

• Next, we need to specify where the advised jar
should be written to.

• Presenter's note: I like to make it obvious that a
.jar has been advised by appending ADVISED to
its formal name.

• Specify an applicable location and name in the
“Output jar” tab:

4604/05/07

Advice to procure (hydrated) exposed domain objects.

• Easiest way to figure out what needs to be
advised is to get a “Hello World” app running and
simply set breakpoints.

• By doing so, we discover that the method call
“makeNewActionBean(...)” of Stripes'
AnnotatedClassActionResolver class needs an
around advice – remember – if we can't handle
the request (no id/bad id/etc.), we simply delegate
back to Stripes. Let's take a look...

4704/05/07

StripesBinaryAdvisement (ActionBean creation)

4804/05/07

So how can we tell if binary weaving did anything?

• Running the app is an option, but there's got to be
something better, right?

• AJDT to the rescue (again).. Window >
Preferences > AspectJ Compiler -> Information:

4904/05/07

Did our binary weave work?

• Yes! The message: Join point 'method-
execution(net.sourceforge.stripes.action.ActionBean
net.sourceforge.stripes.controller.AnnotatedClassActionResolver.makeNewActionBean(java.la
ng.Class, net.sourceforge.stripes.action.ActionBeanContext))' in Type
'net.sourceforge.stripes.controller.AnnotatedClassActionResolver'
(AnnotatedClassActionResolver.java:361) advised by around advice from

'aop.StripesBinaryAdvisement' (StripesBinaryAdvisement.aj:65) Appears in the

“Problems” view:

5004/05/07

AOP System Development -- Agenda

• What is Aspect-Oriented Programming?
• High level system requirements.
• Can Object-Oriented systems be improved upon?
• How do we know what has been done and/or is

happening in our system?
• Does it work? Is it extensible, maintainable,

etc.?
• What's left?
• Wrap up – meet me for a beer (or two) at the

reception...

5104/05/07

System lifecycle sequence.

• Project is compiled (domain classes, aspects, binary weaving).

• Project is deployed (or (re)published).

• Tomcat startup:
• Stripes analyzes classpath for ActionBeans and maps them when found -

taking note of UrlBindings
• **domain.* classes inter-typed as AspectActionBeans.
• **Binary weaving for dynamic @UrlBinding values.

• Stripes analyzes mapped ActionBeans for “event handlers”
• **Inter-typed @DefaultHandler and @HandlesEvent methods are

mapped.

• System ready to service..

• Client makes a request

• Stripes' front controller intercepts the request...

5204/05/07

System lifecycle sequence (continued).

• Stripes determines the request is mapped and if so, creates a new instance of
the ActionBean.
• **Binary weave steps in and determines whether the request includes an

id. If an id is present, the aspect attempts to return a hydrated object from
Db4o. Otherwise, the aspect delegates back to Stripes.

• The returned ActionBean is first bound with any request parameters.

• The ActionBean's event is then invoked.
• **If applicable, the actionBean is saved to the object database.
• **Around advice dynamically provide the Response type.

• Stripes analyzes the Response type and dispatches accordingly.

• Live Demonstration with Debugging.

5304/05/07

AOP System Development -- Agenda

• What is Aspect-Oriented Programming?
• High level system requirements.
• Can Object-Oriented systems be improved upon?
• How do we know what has been done and/or is

happening in our system?
• Does it work? Is it extensible, maintainable, etc.?
• What's left?
• Wrap up – meet me for a beer (or two) at the

reception...

5404/05/07

What's left?

• Aspect library to dynamically:
• configure multiple types of persistence
• configure an adaptation to a completely different MVC framework

• Deleting objects:
• time didn't allow for this to be fully investigated

• Pretty up the UI
• Sitemesh comes to mind

• Your imagination is the limit!

5504/05/07

In Summary

• After gathering requirements, take a step back
and exercise Aspectual Decomposition.

• In order to determine where binary weaving may
need to take place, get a HelloWorld application
running and simply set breakpoints.

• If you run into problems with the compiler,
particularly when working with annotations in
AspectJ 5, there is almost always a different way
to “skin the cat”. (But don't forget to file a bug
report!)

5604/05/07

Relevance/Practicality?

• This demo showed that POJOs can be adapted to
environments not necessarily envisioned at their
time of creation.

• This approach also enables a delay in
architectural decision.
• Domain may be developed while concurrent research is being

done on other architectural components.
• Once the components have been identified, it only takes a couple

aspects to adapt the model to them.

• This approach, enables easy migration from
“legacy” frameworks to “modern”
• For example, Spring to Guice (simply inter-type new annotations).

5704/05/07

AOP System Development -- Agenda

• What is Aspect-Oriented Programming?
• High level system requirements.
• Can Object-Oriented systems be improved upon?
• How do we know what has been done and/or is

happening in our system?
• Does it work? Is it extensible, maintainable, etc.?
• What's left?
• Wrap up – meet me for a beer (or two) at the

reception...

5804/05/07

Any Questions?

• Please feel free to stop up and check out the
code for yourself!

• The code and presentation will be made
available.

• All code and slides were written using Open-
Source Software:
• Ubuntu Linux 6.10: ubuntu.com
• Eclipse/AJDT: eclipse.org
• OpenOffice: openoffice.org
• Stripes: stripes.mc4j.org
• Db4o: db4o.com

• Ladies and Gentlemen, Thank-you!

