The Safety Scissors
‘Of Metaprogramming



D _

Ruby2Ruby <



(Llambda do
puts “hello world”
end) .to_ruby



class Widget < ActiveRecord: :Base
end



RubyZ2Ruby . translate(Widget)



class Widget < ActiveRecord: :Base
has_one :foo
end



RubyZ2Ruby . translate(Widget)






#1/o0pt/Tocal /bin/ruby

class Fixnum
alias original_to_s to_s
def to_s
if @ == self ¥ 3 && @ == self % 5
"fizzbuzz"
elsif @ = self % 3
II_F.i.IzII
elsif @ = self % 5
"buzz"
else
original_to_s
end
end
end

(1..100).to_a.each{li]l p i}















% L4
Wi

B :

. tangled )
(l . gobiecf graph




stop monkey-patching!



nothing can ever protect you

from bad programming



nothing can ever protect you

from bad programming



VIRTUOUS CODE

Home Abowt

Monkeypatching is Destroying Ruby

(The title of this post 1s intended to be deliberately provocative, as well as being a nod to Steven Colbert’s *“The People Destroying
America” segments. [t's provocative because | want to get people talking about this issue. [ don't actually think that monkey patching is

“destroying” Ruby, but I do think the proliferation of the technique has real and troubling implications for Ruby's future.)

“Monkey patching”, for anyone who doesn’t know, refers to the practice of extending or modifying existing code by changing classes at
run-time. It is a powerful technique that has become popular in the Ruby community at least in part because the Ruby lanpuage makes it so
easy. Any class can be re-opened at any time and amended in any way.

I believe the term first arose 1n the Python community, as a derogatory term for a practice which that community tended to frown on. The
Ruby community, on the other hand, has embraced the term and the practice with enthusiasm. I'm starting to think that the Pythonistas’
attitude may have been justified.

Here's what crystalized it for me. The other day | wrote a small Rails plugin (NullDB). It was inspired largely by another plugin,
UnitRecord. UnitRecord is by Dan Manges, a talented Rails developer whom 1 have a lot of respect for.

UnitRecord 15 implemented almost entirely as a set of monkey patches. When invoked, 1t dynamically modifies several standard Ruby and
Rails classes, including ActiveRecord: :Base, Test::Uniz::TestCase. AS a result of this implementation, it is tightly coupled to the
inner workings of ActiveRecord. A small change to Rails and 1t could cease to work, and such a failure would be difficult to debug.
Indeed, one of the reasons [ decided to write NullDB was because of just such a failure.

In writing NullDB, [ discovered that [ could achieve the same functionality without resorting to monkey patching. Instead of modifying
existing classes, 1t implements the Rails Database Adapter API. The finished library 1s shorter than UnitRecord, 1s composed entirely of
implemetations of public APIs, and contains zero monkey patches. The code 15 also easier to understand, 1n my opinion, because of the
lack of metaprogramming.




evang.eli.st

Utterly unqualified opinions on software

alias_method_chain :alias_method_chain,
.awesome (or, how I learned to stop worrying and
made Python nation and anyone else afraid of
monkey-patching my bitch)

February 27th, 2008

There's a crazy idea out there that monkey-patching is bad. alias method_ chain is perhaps the worst
offender. It allows you to easily decorate an object with behavior at runtime. The problem occurs when
maintaining code that is all alias method_ chain'ed out - such as ActiveRecord::Base and the gazillion
plugins that monkey patch it. It's tough to figure out what method you're actually aliasing away, and god
help you if you rely on ordering,.

Some may criticize, but I prefer to Do Cool Shit™

I present to you a deliciously self-referential way to keep your alias_method_ chain headaches at bay:

Pa

I Iiv

stan
nov



Lests




Lests

Y U NCED

specs




TESTING

| FIND YOUR LACK OF TESTS DISTURBING.




tests rawk



debuggers suck



debuggers
SUCK




monkey-patch
monkey-patching

etself



meta-monkey-patching






l.filter
l.filt




code == data



at this point, | just demoed code from my blog.
below is a link to the post:

(code samples are included)


http://gilesbowkett.blogspot.com/2008/03/simple-metaprogramming-logger-with.html
http://gilesbowkett.blogspot.com/2008/03/simple-metaprogramming-logger-with.html

OO0

2| generated_graph.py

cranberries A Lo
FilL(B.2)

font{"Helvetica", 2@8)

# adding a method
text{"Ootmeal", 18, 28)
beginpath{18, 28}
text{"cranberries", 178, 28)
lineto{17a, 28

endpath )

# zubclaszing

text("String", 16, 78)
beginpath{18, 78}
text{"BreakfaztCafe", 78, 148)
lineto(7a, 14@%

endpath )

# linking

) beginpath{78, 148}
lineto(178, 28
endpath )

'!‘”_r

s




simple object graph



nodebox



% L4
Wi

B :

. tangled )
(l . gobiecf graph







same tool

Qatmeal anberries

String

‘ '.Br“éakfastCafe




Qatmeal ranberries

String

) BréakfastCafe

different output



=

-/

proof of concept


















debuggers suck



some people want debuggers






“Ruby has no tool support!”



Oatmeal _cranberries

Py

§tring

/

--.EF'eakfastCafe

. 7, 148)




zomgwif

shock the monkey



Powerful Tools



Powerful Tools

® Rubinius



Powerful Tools

® Rubinius

® Nodebox



Powerful Tools

® Rubinius
® Nodebox

® code == data



® code == data



code == data



1998



generated HTML



automated cvs and rcs



(oDE
JENERATION

RIN ACTION

Code generation is the technique of using or writing
programs that write source code. Code generators are tools
built to serve engineers in the creation ol applications. Just
as woodworkers use customized tools called jigs to allow

3 .I;-

them to build furniture more quickly and accurately, code

aanaratare allow anoinessre o concentrats an Bnildino the



kJB

(2003)



legacy app: 150 tables



ity
t1i

n

S per e

1le

fi

S |

ejb:



7 * 150 = 1050 Java files



by hand: 3+ man-years



generators: 2 man-months






four generator types

e code munger generator

e Iinline code expansion generator
e mixed-code generator

e partial-class generator

e tler generator



generating Uls



generating unit tests



embedding SQL
with generators



creating database
access generators



generating web
services layers



generating models from
a business logic DSL



sound familiar?






script/generate scaffold



script/generate resource



script/generate plugin



script/generate migration



script/generate



ralls Command



acts_as_authenti cated



restful_authenti cation



ActiveRecord SQL



ActionPack Helpers

e ActiveRecordHelper e l'ormTagHelper

e AssetTagHelper e JavascriptHelper

e AtomFeedHelper e NumberHelper

e BenchmarkHelper e PrototypeHelper

e CacheHelper « RecordTagHelper

e CaptureHelper e SanitizeHelper

e DateHelper e ScriptaculousHelper
e DebugHelper e TagHelper

e F'ormHelper e TextHelper

e FormOptionsHelper eUrlHelper

e RecordIdentificationHelper



code generation FTW



code == data



(eq (code (data)))



Paul Graham




functions
which return functions
which return functions
which return functions
which return functions
which return functions
which return functions
which return functions



code
which generates data
which runs as code
which generates data
which runs as code
which generates data
which runs as code
which generates data



e Oo smuglispweeny: My Biggest Lisp Project
http://smuglispweeny.blogspot.com/2008/03 fmy-biggest-lisp-project.html R33) - "-’:l*

| smuglispweeny: My Bigges. .. |

Now here is the alternative. What if we
instantiate a form in memory, let the
cells compute the layout, and then
traverse the form writing out a
persistent mirror image of what we find,
including computed layout coordinates?
Business logic can be written out
symbolically and read back in because
thanks to Dr. McCarthy code is data. We
avoid the redundant computations, but
more importantly we now had a changed
form specification as a second set of
data instead of as a software release.
Work on the original performance
problem had serendipitously dispatched




lisp macros pwn
“metaprogramming’



and you can do
them in Perl!



F YN
T“JT“J

MARK JASON DOMINUS




JIMBWOZ

shocked? perl!



THE ULTIMATE



COMBINATOR






small teams




small teams lisp macros




great programmers can
write better programmers
than they can hire



great programmers can
write better programmers
than they can hire

melaprogramming



T gy
._._-l._l...-...nlu
P T

S
s .. r
— - - X Lo N




. .




simple
clarity



simplicility

magilc



skilled programmers can
write better programmers
than they can hire

melaprogramming



(oDE
JENERATION

RIN ACTION

Code generation is the technique of using or writing
programs that write source code. Code generators are tools
built to serve engineers in the creation ol applications. Just
as woodworkers use customized tools called jigs to allow

3 .I;-

them to build furniture more quickly and accurately, code

aanaratare allow anoinessre o concentrats an Bnildino the



code
which generates data
which runs as code
which generates data
which runs as code
which generates data
which runs as code
which generates data



Unix.1s_a? Lisp



# => true






Caveats!



Caveats!

® read the book, the technique is easy



Caveats!

® read the book, the technique is easy

® |everaging it is the clever part



Caveats!

® read the book, the technique is easy
® |everaging it is the clever part

® you can use Ruby as well as Rubinius



Caveats!

read the book, the technique is easy
leveraging it is the clever part
you can use Ruby as well as Rubinius

if Unix is a Lisp, the filesystem is a compiler






Essential Technique



Essential Technique

® puts



Essential Technique

® puts

® eval



Essential Technique

® puts
® cval

e ERB



Essential Technique

® puts
® cval

e ERB

® (unix pipes)



Essential Technique

® open mouth
® make noise

® profit






