
Code Generation
The Safety Scissors

Of Metaprogramming

Ruby2Ruby

(lambda do
 puts “hello world”
end).to_ruby

class Widget < ActiveRecord::Base
end

Ruby2Ruby.translate(Widget)

class Widget < ActiveRecord::Base
 has_one :foo
end

Ruby2Ruby.translate(Widget)

overkil l

monkeypatching

tangled
object graph

stop monkey-patching!

nothing can ever protect you

from bad programming

nothing can ever protect you

from bad programming

tests

specs

tests

specs
y u need

tests rawk

debuggers suck

debuggers
 suck

monkey-patch
monkey-patching

itself

meta-monkey-patching

rubinius

nodebox

code == data

at this point, I just demoed code from my blog.
below is a link to the post:

http://gilesbowkett.blogspot.com/2008/03/simple-metaprogramming-logger-with.html
(code samples are included)

http://gilesbowkett.blogspot.com/2008/03/simple-metaprogramming-logger-with.html
http://gilesbowkett.blogspot.com/2008/03/simple-metaprogramming-logger-with.html

simple object graph

nodebox

tangled
object graph

node box

same tool

different output

proof of concept

foo

foo

bar

foo

bar
baz

foo

bar
baz

foo
foo

foo

foo

foo

foo

foo

bar

bar

bar

bar

bar

bar

bar
baz

baz

baz

baz

baz

debuggers suck

some people want debuggers

“Ruby has no tool support!”

1 day

shock the monkey

Powerful Tools

Powerful Tools

• Rubinius

• Nodebox

• code == data

Powerful Tools

• Rubinius

• Nodebox

• code == data

Powerful Tools

• Rubinius

• Nodebox

• code == data

• Rubinius

• Nodebox

• code == data

code == data

1998

generated HTML

automated cvs and rcs

(2003)
EJB

legacy app: 150 tables

ejb: 7 files per entity

7 * 150 = 1050 Java files

by hand: 3+ man-years

generators: 2 man-months

four generator types

• code munger generator
• inline code expansion generator
• mixed-code generator
• partial-class generator
• tier generator

generating UIs

generating unit tests

embedding SQL
with generators

creating database
access generators

generating web
services layers

generating models from
a business logic DSL

sound familiar?

script/generate scaffold

script/generate resource

script/generate plugin

script/generate migration

script/generate

rails Command

acts_as_authenticated

restful_authentication

ActiveRecord SQL

ActionPack Helpers
•ActiveRecordHelper
•AssetTagHelper
•AtomFeedHelper
•BenchmarkHelper
•CacheHelper
•CaptureHelper
•DateHelper
•DebugHelper
•FormHelper
•FormOptionsHelper

•FormTagHelper
•JavascriptHelper
•NumberHelper
•PrototypeHelper
•RecordTagHelper
•SanitizeHelper
•ScriptaculousHelper
•TagHelper
•TextHelper
•UrlHelper

Text

•RecordIdentificationHelper

code generation FTW

code == data

(eq (code (data)))

functions
 which return functions
 which return functions
 which return functions
 which return functions
 which return functions
 which return functions
 which return functions
 which return functions
 which return functions
 which return functions
 which return functions
 which return functions

code
 which generates data
 which runs as code
 which generates data
 which runs as code
 which generates data
 which runs as code
 which generates data
 which runs as code
 which generates data
 which runs as code
 which generates data
 which runs as code

lisp macros pwn
“metaprogramming”

and you can do
them in Perl!

shocked? perl!

λ
the ultimate

combinator

$

$small teams

$small teams lisp macros

great programmers can
write better programmers
than they can hire

great programmers can
write better programmers
than they can hire

metaprogramming

great?

incredible power

simple
clarity

simplicity

magic

skilled programmers can
write better programmers
than they can hire

metaprogramming

code
 which generates data
 which runs as code
 which generates data
 which runs as code
 which generates data
 which runs as code
 which generates data
 which runs as code
 which generates data
 which runs as code
 which generates data
 which runs as code

Unix.is_a? Lisp

=> true

Caveats!

• read the book, the technique is easy

• leveraging it is the clever part

• you can use Ruby as well as Rubinius

• if Unix is a Lisp, the filesystem is a compiler

Caveats!

• read the book, the technique is easy

• leveraging it is the clever part

• you can use Ruby as well as Rubinius

• if Unix is a Lisp, the filesystem is a compiler

Caveats!

• read the book, the technique is easy

• leveraging it is the clever part

• you can use Ruby as well as Rubinius

• if Unix is a Lisp, the filesystem is a compiler

Caveats!

• read the book, the technique is easy

• leveraging it is the clever part

• you can use Ruby as well as Rubinius

• if Unix is a Lisp, the filesystem is a compiler

Caveats!

• read the book, the technique is easy

• leveraging it is the clever part

• you can use Ruby as well as Rubinius

• if Unix is a Lisp, the filesystem is a compiler

Essential Technique

• read the book, the technique is easy

• leveraging it is the clever part

• you can use Ruby as well as Rubinius

• if Unix is a Lisp, the filesystem is a compiler

Essential Technique

• puts

• leveraging it is the clever part

• you can use Ruby as well as Rubinius

• if Unix is a Lisp, the filesystem is a compiler

Essential Technique

• puts

• eval

• you can use Ruby as well as Rubinius

• if Unix is a Lisp, the filesystem is a compiler

Essential Technique

• puts

• eval

• ERB

• if Unix is a Lisp, the filesystem is a compiler

Essential Technique

• puts

• eval

• ERB

• if Unix is a Lisp, the filesystem is a compiler•(unix pipes)

Essential Technique

• open mouth

• make noise

• profit

• if Unix is a Lisp, the filesystem is a compiler

