
Maven in the wild

An introduction to Maven

Maven gone wild!!

An introduction to Maven

Presentation Summary

• An overview of Maven
• What Maven provides?
• Maven’s principles
• Maven’s benefits
• Maven’s features
• Related Maven technologies
• Questions?

An overview of Maven

• What is Maven?
– A project management framework: a set

of standards, repository format and
software

– Model and tools which provide inherent
utility

– Bring standards to builds and project
management, not a “we know better”
framework

– A lens for quality
– A way to build relationships between

many projects
– Encourage a culture of reciprocity

What does Maven provide?

• A comprehensive model for software
projects

• Tools that interact with Maven’s
declarative model
– Coherence
– Reusability
– Agility
– Maintainability

Maven’s principles

• Modeled after Christopher Alexander’s
idea of patterns

• To provide a lingua franca or shared
language for project management

Maven’s principles

• Convention over configuration
– Standard directory layout

• Finding all project content
– One primary output per project

• Client/Server/Utility code example
• Separation of concerns (SoC)

– Standard naming convention
• foo-1.0.jar vs foo.jar

Maven’s principles

• Declarative execution
– Maven Project Object Model (POM)
– Maven’s Super POM
– Maven’s build life cycle

A typical POM

• With this you can compile, test, package,
install and create a minimal site! How?

 <project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.mycompany.myproject</groupId>
 <artifactId>my-app</artifactId>
 <version>1.0-SNAPSHOT</version>
 <name>My App</name>
 </project>

Super POM

<project>
 <modelVersion>4.0.0</modelVersion>
 ...
 <build>
 <directory>target</directory>
 <outputDirectory>target/classes</outputDirectory>
 <finalName>${artifactId}-${version}</finalName>
 <testOutputDirectory>target/test-classes</testOutputDirectory>
 <sourceDirectory>src/main/java</sourceDirectory>
 <scriptSourceDirectory>src/main/scripts</scriptSourceDirectory>
 <testSourceDirectory>src/test/java</testSourceDirectory>
 <resources>
 <resource>
 <directory>src/main/resources</directory>
 </resource>
 </resources>
 <testResources>
 <testResource>
 <directory>src/test/resources</directory>
 </testResource>
 </testResources>
 </build>
</project>

Maven’s build life cycle

• Builds in Maven
follow a pattern

• Plug-ins slot into the
life cycle to add
functionality

• Ensures developers
moving between
projects do not need
to learn new
processes

Validate

Generate Sources

Generate Resources

Compile

Test

Package

Install

Deploy

Maven’s principles

• Reuse of build logic
– Maven is a plug-in execution framework

coordinated by the build life cycle
– All build logic is encapsulated in plug-ins

with a separation of concerns in mind
(SoC)

– Plug-ins can be applied to any Maven
Project

Maven’s principles

• Coherent organization of dependencies
– Repositories
– Artifacts
– Dependency analysis

Repositories

• Where all the artifacts are stored
– Local repository refers to a cache of

artifacts used on local machine
– Remote repository refers to a source of

artifacts, available over file:, http:, etc.
• Central repository contains popular

redistributable artifacts (over 8000 at
last count)
– http://repo1.maven.org/maven2/

Artifacts

• The result of a build in Maven is called
an artifact: a JAR, a WAR, an EAR

• A single artifact can be referenced by
any number of projects

Dependency analysis

• Declaratively specifying dependencies
allows you to perform exacting
analysis. This is hard to do with an
arbitrary directory full of JARs

• When working with multiple projects
that use the same dependency,
determining a suitable version is critical

Maven’s benefits

• Removes a lot of the burden of build
and project maintenance

• Easy for users to embrace best
practices

• Draw upon the active Maven open-
source community for solutions

• Take your development process to the
next level

Related Maven technologies

• Maven Wagon
• Maven SCM
• Continuum
• Maven Repository Manager
• IDE integration
• In the near future:

– Distributed Continuum (GBuild)
– Dashboard
– Project Infrastructure Bootstrapper
– Maven Issue & Maven Wiki

Maven 2.0 Features

• Fast, small – embeddable
• Enhanced dependency support
• Build life cycle
• Enhanced plug-in support
• Multi-module project support
• Site and documentation enhancements
• Release management
• Archetypes - project templates
• Build Profiles

Transitive Dependencies

• Always enabled in Maven 2.0
• Features:

– Don't need to declare dependencies of
dependencies yourself

– Dependency mediation
– Intelligent scoping
– Fine grained control over versioning and

exclusions

Snapshot Handling

• Deploying to a shared repository gives
a version with a time stamp and build #

• Don’t need to update dependency
version to get updated builds

• Updates daily, on-demand, or at a
particular interval

On-demand Features

• Plug-ins can be requested on-demand
from the command line

• In Maven 1, this required manual
installation

• For example, mvn idea:idea will
generate an IDEA project file without
modifications to your project

Plugin Version Discovery

• Can opt not to declare a plugin version
in your project

• Will regularly check for a new release,
and download it if desired

• Users can opt to get prompted for new
releases of plugins

• Release tool will record the active
version for reproducible builds

Plugin Languages

• Java, Beanshell
• Java is the most common
• Beanshell is new, useful for rapid

prototyping
• Can support others with a small

amount of work if there is demand
– For example: Jython, Groovy, JRuby

Multiple Modules

• Maven 2 natively deals with multi-
module builds

• A module refers to another project in
the build tree

• Goals are performed on all found
modules by default

• Modules can in turn have modules

 <modules>
 <module>wagon-provider-api</module>
 <module>wagon-providers</module>
 </module>

Site and Documentation

• Accepts several input formats
– Almost Plain Text (Wiki like)
– Xdoc (Maven 1.0 compatible)
– FAQ (Maven 1.0 compatible)
– Docbook

• Presently outputs XHTML, Xdoc,
Docbook, Latex and RTF, and PDF

Example APT Document

 Generating a Site

 Maven Documentation Team

 13 May 2005

Building a Site

* Creating Content

 The first step to creating your site is to create some content. In
 Maven 2.0, the site content is separated by format, as there are several
 available.

+- src/
 +- site/
 +- apt/
 | +- index.apt
 +- site.xml

 The Xdoc format is the same as
 {{{http://maven.apache.org/using/site.html} used in Maven 1.0}}.
 However, <<<navigation.xml>>> has been replaced by the site descriptor
 (see below).

Example APT Document

Release Assistance

• Resolves information in the project to
make the release reproducible

• Updates the version information,
commits and tags a release

• Does a clean checkout and builds the
release

Project Archetypes

● Currently archetypes for:
– JAR/WAR
– Site
– Java Plugins
– Can easily create your own archetypes

• Uses Velocity
• Downloaded from the repository so

they are easily shared

Build Profiles

• Change the build depending on the
environment
– Dependencies, repositories, plugins and

configuration
• Trigger by operating system, JDK,

extistence of software, and so on, as
well as command line parameter

• Per user or per project
• Used to set up standard environments:

– Development, Test, QA and Production

Support for Other Languages

• Being implemented as plugins
• Currently we have seen work on a C#

compiler, and plan to support C/C++
environments on Unix and Windows

Questions?

• Thanks for listening!

