Maven in the wild

An introduction to Maven

)D: Mergere

Maven gone wild!!

An introduction to Maven

)D: Mergere

Presentation Summary

An overview of Maven

What Maven provides?
Maven'’s principles

Maven'’s benefits

Maven'’s features

Related Maven technologies
Questions?

D‘:Mergere

What is Maven?

— A project management framework: a set
of standards, repository format and
software

— Model and tools which provide inherent
utility
— Bring standards to builds and project

management, not a “we know better”
framework

— Alens for quality

— A way to build relationships between
many projects

— Encourage a culture of reciprocity

Mergere

What does Maven provide?

« A comprehensive model for software
projects

* Tools that interact with Maven’s
declarative model
— Coherence
— Reusability
— Agility
— Maintainability

DjMergere

Maven’s principles

* Modeled after Christopher Alexander’s
idea of patterns

* To provide a lingua franca or shared
language for project management

DjMergere

Maven’s principles

« Convention over configuration
— Standard directory layout
* Finding all project content
— One primary output per project
 Client/Server/Utility code example
« Separation of concerns (SoC)

— Standard naming convention
 foo-1.0.jar vs foo.jar

Maven’s principles

* Declarative execution
— Maven Project Object Model (POM)
— Maven’s Super POM

— Maven'’s build life cycle

D‘:Mergere

A typical POM

« With this you can compile, test, package,
install and create a minimal site! How?

<project>
<modelVersion>4.0.0</modelVersion>
<groupIld>com.mycompany.myproject</groupId>
<artifactId>my-app</artifactId>
<version>l.0-SNAPSHOT</version>
<name>My App</name>

</project>

D Mergere

Super POM

<project>
<modelVersion>4.0.0</modelVersion>
<build>
<directory>target</directory>
<outputDirectory>target/classes</outputDirectory>
<finalName>${artifactId}-${version}</finalName>
<testOutputDirectory>target/test-classes</testOutputDirectory>
<sourceDirectory>src/main/java</sourceDirectory>
<scriptSourceDirectory>src/main/scripts</scriptSourceDirectory>
<testSourceDirectory>src/test/java</testSourceDirectory>
<resources>
<resource>
<directory>src/main/resources</directory>
</resource>
</resources>
<testResources>
<testResource>
<directory>src/test/resources</directory>
</testResource>
</testResources>
</build>
</project>

D:Mergere

Maven’s build life cycle

Validate

e Builds in Maven %_D
fO”OW d pattern Generate Sources
Plug-ins slot into the !
/Ife CyCle tO add Generate Resources
functionality I _'
Ensures developers (Compile)
moving between

. Test
projects do not need <+>
to learn new "

ackage
(Install)

(Deploy)

DjMergere

Maven’s principles

* Reuse of build logic

— Maven is a plug-in execution framework
coordinated by the build life cycle

— All build logic is encapsulated in plug-ins
with a separation of concerns in mind

(SoC)

— Plug-ins can be applied to any Maven
Project

Maven’s principles

« Coherent organization of dependencies
— Repositories
— Artifacts
— Dependency analysis

)D:Mergere

 Where all the artifacts are stored

— Local repository refers to a cache of
artifacts used on local machine

— Remote repository refers to a source of
artifacts, available over file:, http:, etc.

« Central repository contains popular
redistributable artifacts (over 8000 at
last count)

— http://repo1.maven.org/maven2/

Mergere

Artifacts

 The result of a build in Maven is called
an artifact: a JAR, a WAR, an EAR

* A single artifact can be referenced by
any number of projects

D‘:‘Mergere

» Declaratively specifying dependencies
allows you to perform exacting
analysis. This is hard to do with an

arbitrary directory full of JARs

* When working with multiple projects
that use the same dependency,
determining a suitable version is critical

Mergere

Maven’s benefits

Removes a lot of the burden of build
and project maintenance

Easy for users to embrace best
practices

Draw upon the active Maven open-
source community for solutions

Take your development process to the
next level

D Mergere

Related Maven technologies

Maven Wagon

Maven SCM

Continuum

Maven Repository Manager
IDE integration

In the near future:

— Distributed Continuum (GBuild)

— Dashboard

— Project Infrastructure Bootstrapper
— Maven Issue & Maven Wiki

D‘:‘Mergere

Fast, small — embeddable
Enhanced dependency support
Build life cycle

Enhanced plug-in support
Multi-module project support

Site and documentation enhancements
Release management

Archetypes - project templates

Build Profiles

Mergere

Transitive Dependencies

» Always enabled in Maven 2.0
* Features:

Don't need to declare dependencies of
dependencies yourself

Dependency mediation

ntelligent scoping

~ine grained control over versioning and
exclusions

Snapshot Handling

* Deploying to a shared repository gives
a version with a time stamp and build #

* Don’t need to update dependency
version to get updated builds

« Updates daily, on-demand, or at a

particular interval

On-demand Features

* Plug-ins can be requested on-demand
from the command line

* |In Maven 1, this required manual
Installation

 For example, mvn idea:idea WiIll

generate an IDEA project file without
modifications to your project

Can opt not to declare a plugin version
In your project

Will regularly check for a new release,
and download it if desired

Users can opt to get prompted for new
releases of plugins

Release tool will record the active
version for reproducible builds

Mergere

Plugin Languages

« Java, Beanshell

e Java is the most common

 Beanshell is new, useful for rapid
prototyping

« Can support others with a small
amount of work if there is demand

— For example: Jython, Groovy, JRuby

D:Mergere

Multiple Modules

Maven 2 natively deals with multi-
module builds

A module refers to another project in
the build tree

Goals are performed on all found

modules by default
Modules can in turn have modules

<modules>
<module>wagon-provider-api</module>
<module>wagon-providers</module>
</module>

Site and Documentation

* Accepts several input formats
— Almost Plain Text (Wiki like)
— Xdoc (Maven 1.0 compatible)
— FAQ (Maven 1.0 compatible)
— Docbook

* Presently outputs XHTML, Xdoc,
Docbook, Latex and RTF, and PDF

Example APT Document

Building a Site
* Creating Content

The first step to creating your site is to create some content. In
Maven 2.0, the site content is separated by format, as there are several
available.

| +- index.apt
+- site.xml

The Xdoc format is the same as
{{{http://maven.apache.org/using/site.html} used in Maven 1.0}}.
However, <<<navigation.xml>>> has been replaced by the site descriptor
(see below).

D‘:Mergere

Example APT Document

Apache Maven Project |\]gqven

http://maven.apache.org/

Last Published: Tue May 21 09:32:55 EST 2005 Apache | Maven 1.0 | Maven 2

Maven 2.0 . . .
e Building a Site
Release Notes
General
Infermation .
For Maven 1.0 Creating Content

Sers

Road Map
Usz"sttF"‘dset — The first step to creating your site is to create some content. In Maven 2.0, the site
e dteainy content is separated by format, as there are several available.

Configuration
Dependency
Mechanism
Developing Plugins +- src/
Developing Plugins -
with Marmalade +- site/
Creating a Site +- apt/
Reference | +- index.apt
Project Descriptor +— zite.xml
Settings Descriptor
Available Plugins
Mojo API))
AnE ook The Xdoc format is the same as used in Maven 1.0. However, navigation.xml has been

Developers replaced by the site descriptor (see below).
Documentation
MNeeded

D: Mergere

Release Assistance

* Resolves information in the project to
make the release reproducible

« Updates the version information,
commits and tags a release

 Does a clean checkout and builds the

release

Project Archetypes

- Currently archetypes for:
— JAR/WAR

— Site

— Java Plugins

— Can easily create your own archetypes
« Uses Velocity

* Downloaded from the repository so
they are easily shared

DtMergere

Change the build depending on the
environment

— Dependencies, repositories, plugins and
configuration

Trigger by operating system, JDK,
extistence of software, and so on, as
well as command line parameter

Per user or per project

Used to set up standard environments:
— Development, Test, QA and Production

Mergere
4

Support for Other Languages

* Being implemented as plugins
« Currently we have seen work on a C#

compiler, and plan to support C/C++
environments on Unix and Windows

D‘:—Mergere

Questions?

* Thanks for listening!

D: Mergere

