

Introduction to
JMS & ActiveMQ

Aaron Mulder
Chariot Solutions

Agenda

● Quick intro to JMS
● ActiveMQ Basics
● ActiveMQ Clustering

JMS

About JMS

● The Java API for messaging
● Included in Java EE
● Generally used for asynchronous operations, or

to parallelize or throttle a bunch of work
● Key concepts include the message broker,

message producers, message consumers, JMS
topics vs. queues, and various message formats

● Includes a plain Java API (a little complex);
simplified in Java EE, Spring, etc.

JMS Flow

Message
Producer

JMS
Topic

JMS
Queue

Message
Consumer

Message
Consumer

Message
Consumer

JMS
Broker

Some Minutiae

● Both producers and consumers may use
transactions
– But the transaction only encompasses the exchange

between the producer and broker or consumer and
broker; it's not end-to-end

● Messages may be persistent (saved to e.g. disk
in case of broker crash)

● Topic subscribers may be durable (if they
disconnect and reconnect, they'll get the
messages sent while they were offline)

JMS Messages

● Composed of headers and a body
● The headers are name/value pairs, and a

consumer may filter on header values
– Or could just use separate topics/queues instead

● The body is different for different types of
messages, but most common is the text
message with e.g. text, XML, YaML, etc.

● May request an acknowledgement or reply to a
different destination (topic or queue)

ActiveMQ

About ActiveMQ

● An open-source message broker (compare to
JBossMQ, or many commercial products)
– See http://activemq.apache.org/

● Generally stable and high-performance
● Can be run standalone, or inside another

process, app server, or Java EE application
● Supports everything JMS requires, plus various

extensions
● Can also extend with e.g. Camel, ServiceMix

ActiveMQ Protocols/Formats

● Generally there are two main options –
OpenWire (binary) and Stomp (text)
– OpenWire is the default and has the most history and

best support (including SSL)
– Stomp is easiest to develop for and therefore has the

most cross-language support (Perl, Python, Ruby, ...)
● ActiveMQ 5 recommended for best Stomp support

● Also a variety of other special-purpose protocols
(Jabber, adapters for REST/AJAX, etc.)

Additional Features

● Security (SSL and/or username/password
required to connect)

● Management (JMX interface to the broker, as
well as Web Console)

● JMS Extensions (Virtual Destinations,
Retroactive Subscriptions, Exclusive Consumer
& Message Groups, Mirrored Queues, ...)

● Various persistence implementations for
persistent messages

ActiveMQ Configuration Example

<beans ...>
 <broker xmlns="http://activemq.org/config/1.0"
brokerName="MyBroker" dataDirectory="${activemq.base}/data">
 <transportConnectors>
 <transportConnector name="openwire"
 uri="tcp://localhost:60010" />
 <transportConnector name="stomp"
 uri="stomp://localhost:60020"/>
 </transportConnectors>
 <networkConnectors>
 <networkConnector name="Broker1ToBroker2"
 uri="static://(tcp://localhost:60011)"
 failover="true" />
 </networkConnectors>
 </broker>
</beans>

Clustering

● Two clustering strategies:
– Master/Slave(s) – best reliability, no improved

scalability
– Network of Brokers – best scalability, better

availability, somewhat improved reliability
● Network of Brokers is best if you can live with the

side effects
– Messages may be delivered twice or substantially

delayed (also out of order) in a failure scenario
– Messages may be lost if a broker dies for good

Performance Example

● One application we benchmarked had topics with
few messages but many (~500) consumers.
– A single broker and network of brokers performed

similarly, averaging about ½ to 1 second latency
– A master/slave cluster was slower with 1.5-2 second

latency
– Smaller messages were delivered faster (1k twice as

fast as 10k)
– Persistence only matters if messages are not rapidly

consumed
– VM made a difference

Performance Example, con't.

● Results would be different for:
– better hardware
– queues
– more producers / fewer consumers
– different messages
– message selectors
– durable subscriptions
– security options
– transactions
– etc.

Q&A

