C0-PRESENTEDBY O'REILLY '@3

RAILSCONF

“Multi-core Hysteria”:;

FUD about CRUD?

Andrea O. K. Wright, Chariot Solutions
aok@chariotsolutions.com

These are some of the questions | will answer in this talk:

Since Rails is not currently thread-safe, will Rails fall by the wayside as multi-core
technology becomes more prevalent?

What would it take to make Rails thread-safe?

What are the real benefits of thread-safety for Rails developers? What are some
alternative concurrency models?

NOTE: This talk was given at RailsConf 2008 on May 31 and June 1. The presentation
notes were updated on June 22. <=

Loud Thinking

June 06, 2007 11:28

Me
wewt Multi-core hysteria and the thread confusion
Gallery New CPUs are growing in cores and not in GHz. That's a tough problem for
Company applications that have been traditionally single-threaded, like games. They
Girl have to learn all new techniques and rework their thinking to get the most
out of the next-generation platforms.

Projects
Rubv on Rails But the fear of that transition has bled into places where it's largely not
Basecamp relevant, like web-application development. Which has caused quite a few
Highrise folks to pontificate that the sky is falling for Rails because we're not big on

Backpack using threads. It isn't.

Campfire

Ta-da List Multiple cores are langhably easy to utilize for web applications because our

Writeboard

problems are rarely in the speed of serving 1 request. The problem isin
serving thousands or tens or hundreds of thousands of requests. Preferably

More per second.
Feed
Archives Threads are not the only way to do that. Processes do the job nearly as well

with a drop of the complexity. And that's exactly how Rails is scaling to use
all the cores you can throw at it.

The 37signals suite is currently using some ~25 cores for the application
servers that all the applications have dips on. We'd welcome a 64-core chip
any day.

Read more: A pood summary of a discussion on multi-core programming in general.

http://www.loudthinking.com/posts/7-multi-core-hysteria-and-the-thread-confusion

This talk was inspired by a blog entry that David Heinemeier Hansson posted last year
at around this time called “Multi-core hysteria and the thread confusion.” | had
questions about some of his assertions, and | wanted to explore them in depth.

People tend to get somewhat...

http://www.loudthinking.com/posts/7-multi-core-hysteria-and-the-thread-confusion

MYETI~GORE
HYSTFRIA

RIREAD
CONFUSION

...dramatic when talking about multi-core technology, the extent to which developers
will need to completely rewire their thought patterns to take advantage of it, and the
percentage of current code bases that will need to rewritten from the ground up.

There were numerous responses to this blog entry around the Web, ranging from
shrill generalizations on reddit to even-handed and well-reasoned blog posts —- but
none of them answered my questions to my satisfaction. | hope this presentation will

answer some of your questions about the future of Rails as parallelism gets
incorporated into more and more system designs.

- i

e T R e s Gl Photo courtesy, Sun Microsystems

In my abstract,l describe my aproach to addressing concerns about Rails and
thread-safety as “MythBusters-style.”

Most of you will recognize Adam Savage and Jamie Hyneman, also known as the
MythBusters, in this picture.

On their popular TV series, these two special effects experts investigate urban myths
and demystify surprising phenomena.

Here they are posing with some of my colleagues from Chariot Solutions at JavaOne a
couple of years ago.

Photo: Peter Paugh

Sun held a t-shirt hurling contest that year -- developers were invited to design t-
shirt hurling devices that could be used to launch t-shirts into the audience and that
used Java technology in some way.

A Chariot team made the t-shirt hurling contest finals, and they were invited to do a
demo during JavaOne. Here’s a photo of the team in action.

| decided to miss out on all the fun in favor of going to the first RailsConf that year.

| have not been back to JavaOne these last few years, although it sounds like there
was some great JRuby content at JavaOne this year.

TRHAREK YOU VERY MUCH

Tony Arcieri Mlc.hael. Tali Moreshet Eero Synatkari
Koziarski
Nihn Bui Hongli Lai Pratik Naik Dave Sekowski

Erik Cheever John Lam Josh Peek Nick Sieger

Dormando Tomas Dave Poulson Evan Weaver
Matousek
Jeremy Jonathan Ezra
Kemper MenTalgu¥ Rochkind Zygmuntowicz

The MythBusters often enlist the help of top experts, and that’s what | did to make
sure my information is both current and correct.

When determining whether there’s truth to a rumor the MythBusters track down the
source. As you'll see, in several cases, that’s what | did in more ways than one. I'll be

showing a lot of source code.

Loud Thinking

Me June 06, 2007 11:28

sbout [Vlultli-core Hysteria and the

Gallery

company | Rread Confusion

Girl

Projects

rbyon INEW CPUSs are growing in

Rails

sasecamy COTES @and not 1n GHz....

Highrise
Backpack

Campfire

So, let’s take a closer look at David’s blog entry. It starts out with: “New CPUs are
growing in cores and not in GHz.”

Before moving on | want to expand on David’s terse description of this industry trend
at little bit.

For some time, the industry seemed to be following Moore’s Law as if it were a
natural law. Moore’s Law is often invoked in describing the exponential increases in
clock speeds computers ship with on a biyearly basis. But what Gordon Moore
actually predicted, back in 1965, had to do with how rapidly the number of
components that could economically be placed on a chip would increase.

Cramming more components
onto integrated circuits

Integrated circuits will lead to such wonders as
home computers--or at least terminals
connected to a central computer--automatic
controls for automobiles, and personal, portable
communications equipment. The electronic
wristwatch need only a display to be feasible
today.

Gordon E. Moore
Electronics,Vol. 38, No. 8, April 19, 1965

ftp://download.intel.com/museum/Moores_Law/Articles-Press Releases/Gordon_Moore 1965 Article.pdf

Moore, the co-founder of Intel, made his assertion in an article in Electronics
magazine, called “Cramming more components onto integrated circuits.”

As an aside, | thought it was interesting that in this same article he predicted that
“Integrated circuits will lead to such wonders as home computers.”

Cramming more components
onto integrated circuits

Electronics,Vol. 38, No. 8, April 19, 1965

ftp://download.intel.com/museum/Moores_Law/Articles-Press Releases/Gordon_Moore 1965 Article.pdf

The article was accompanied by this cartoon, which shows “Handy Home Computers”
being sold in a department store.

1 rmmm- 01:19 l""""'J"" cJi

http://videos.howstuffworks.com/podtech-networks/2484-mythbusters-guys-talk-chip-size-video.htm

Here are a couple of frames from a short video that Intel commissioned from the
MythBusters in conjunction with launching Centrino Duo technology.

They aim to show how quickly transistors have been shrinking -- what it means for it
to be possible to fit twice as many transistors on a chip every couple of years or so. In
the first frame Adam represents the size of a transistor and Jamie represents the size
of a transistor two years later.

There is a correlation between transistor density and clock speed -- and it is that
smaller components make it logistically possible to increase physical cache sizes.
Reading from a cache closer to a processor is considerably faster than accessing main
memory.

For years, developers have been able to take it for granted that when new hardware is
released, the old software would run noticeably faster on it.

In the bottom frame, Jamie is showing that a transistor was about the size of a
mosquito in 1971.

1 mrrljm 0132 mﬂ i]il

http://videos.howstuffworks.com/podtech-networks/2484-mythbusters-guys-talk-chip-size-video.htm

By 1999 a transistor was small enough to fit inside a red blood cell. The creature in
the bottom picture is a bacterium. When the video was made last year, transistors
were no bigger than one of its spikes.

While chips are continuing to become more and more transistor-dense, clock speed
is starting to plateau. For one thing, faster processors generate intense heat, and
today’s fans can barely keep up.

To ship computers that have the potential to increase performance, the hardware
industry has turned to another solution made possible by decreased component
size...

Multi-core

4

Photo Credit: http://www.flickr.com/photos/marxalot/406754449/

...multicore technology. It’s becoming possible to ship computers with an increasing
number of processing cores built in.

But the only way to leverage more than one core is to designh programs with routines
that can run in parallel with other routines and\or can process different subsets of

data concurrently.

This is where the dire predictions for programmers who are not mastering
concurrency concepts come in.

Based on this photo: http://www.flickr.com/photos/marxalot/406754449/

And as the number of cores increase, the potential for greater amounts of throughput
increases —— but higher numbers of cores introduce additional kinds of complexity

that that present challenges to software developers, like subtle bugs having to do
with cache mechanics.

In his blog, David specifies video gaming an example of an industry that had no
choice but to adapt to the new hardware architecture, but goes on to say...

Loud Thinking

Me June 06, 2007 11:28

sbout [Vlultli-core Hysteria and the

Gallery .
company Thread Confusion
Girl
[Flear of ... transition has bled into places

Projects where 1t's largely not relevant, like web-
fubron gpplication development. Which has

Rails

pasecamp CaUsSed quite a few folks to pontificate

Highrise that the sky 1s falling for Rails because

Backpack yve're not big on using threads. It isn't.
Campfire

...“[F?Iea'r of ... transition has bled into places where it's largely not relevant, like web-
application development. Which has caused quite a few folks to pontificate
that the sky is falling for Rails because we're not big on using threads. It isn't.”

So what are threads, and what are some of the implications of Rails not being thread-
safe?

T hreads

walking = Thread.new do
100.times do
puts "walking"
sleep 1
end
end

chewing = Thread.new do
100.times do
puts "chewing"
sleep 1
end
end

walking. join
chewing. join

Threads provide a means for achieving concurrency. They provide an alternative to
strict sequential processing.

Threads allow a program to walk and chew gum at the same time. Here’s the Ruby
syntax for a program that does just that.

The join calls at the end ensure that program doesn’t exit before the logic in the
threads finishes executing.

T hreads

walking = Thread.new do
100.times

AOK:~ aok$ ruby walk chew.rb

puts walking
sleep :
chewing
end :
walking
end .
chewling
chewing =
100.time
puts "
sleep
end
end

walking. join
chewing. join

Here’s a portion of the output. We see “walking” interspersed with “chewing” in such
a way that it’s clear that Ruby did not wait until the first thread was finished before
starting to execute the second one.

Threads share memory, so if more than one thread needs to access the same data,
the data needs to be protected. Otherwise the results can be unpredictable. Data can
morph in unanticipated ways at unexpected times.

HELP! STRANGE BUG IN THREADING:
HITTING BACK CAUSES AN ERROR

4 0 R E http://lists.apple.com/archives/darwin-development/2002/Dec/msg00175.html

http://java-errors.blogspot.com/2008/03/android-developers-re-help-strange-bug.html
http: //blog cleveland.com/entertainment/2007/07/ I|fe_W|thout_the_weekly_world html

That’s probably why people talk about threading problems as if they are paranormal
events, frequently using words like “strange”, “bizarre”, and “weird” .

This article is from the late, great Weekly World News, but the phrases | have set as
headlines are taken from the subject lines of actual posts to tech mailing lists.

http://blog.cleveland.com/entertainment/2007/07/life_without_the_weekly_world.html

MUTEX

One way to ensure that only one thread accesses shared data at a time is to use a
concurrency primitive known as a Mutex, another weird word that sounds like it
might belong in a tabloid headline. Mutex is short for “mutual exclusion lock.”

Men in Black (MIB)

http://en.wikipedia.org/wiki/lmage:MiB.svg

With all the tabloid sensationalism around the kind of nasty bugs that can surface
when threading goes awry, I’ve been thinking of mutexes in terms of The Men in
Black -- pop culture figures who wear black suits and dark sunglasses and show up
at UFO sightings to try to keep the witnesses from spreading the story.

In the movie, Men in Black, starring Will Smith and Tommy Lee Jones as agents J and
K, respectively, the space aliens and humans live in the same areas, but generally do
not cross paths —- not unlike the way multiple threads share the same address space.
All is well until a human sees evidence of a space alien. The chaos that ensues is not
unlike the programmatic confusion a thread experiences when faced with a value it
was not expecting and is not equipped to handle because it was modified by another
thread.

The mission of the Men in Black is to keep the humans and space aliens from
interacting.

The tabloids figure prominently in the movie. Agents J and K frequently check the
tabloids, and not just the articles with headlines that include the word “Space Alien”
but also articles with headlines like: “Bat Boy leads Police on a Wild Goose Chase
Through 4 states” -- to find out where their services are needed next.

So, how does a mutex keep the threads from accessing the same data at the same
time?

while true
client = @socket.accept

thread = Thread.new(client) {
|lc| process client(c)

}

thread[:started on] = Time.now

@workers.add(thread)

sleep @throttle if @throttle > 0
end

graceful shutdown

end

Here’s an abridged version of Mongrel’s main loop. When a request comes in,
Mongrel creates a new thread for calling “process_client”, which in turn calls
“process” on the Rails handler, which invokes the Rails dispatcher.

That picture is the newish Mongrel logo.

Note that all the threads spun by Mongrel share the same address space —- and that
they all share the Rails instance that Mongrel loads on startup.

There’s no thread-safety synchronization code in the Mongrel main loop!

So, what’s to stop one Rails request from changing shared data that will confuse
another another Rails request?

@@file exist cache

For any of you who may not have a clear idea of specifically why its a problem for
multiple threads running Rails requests to share the same address space or
specifically what | mean by “shared data that must be protected”, I’'m going to go into
a lot of detail about where Rails is not thread-safe in short order. For now, here’s
something concrete:

Class variables constitute a “red flag” of sorts when analyzing code for what needs

protection
if its going to be shared among threads.

This is a class variable used by the Rails framework to cache code for the module that
contains helpers like image_tag and javascript_tag. Picture thread 1 and thread 2
both looking at this variable. If thread 1 changes its value, the new value becomes the
current value for thread 2 -- where it may not be accurate.

Mongrel RailsHandler

class RalilsHandler < Mongrel::HttpHandler

def initialize(dir, mime map =

@guard = Mutex.new

end

def process(request, response)

cgl = Mongrel::CGIWrapper.new(request, response)

@guard.synchronize {

Dispatcher.dispatch(cgi,
ActionController: :CgiRequest: :DEFAULT SESSION OPTIONS,
response.body)

}

end
end

Enter: the Men in Black!

Here’s the Mongrel Rails handler that's packaged with Mongrel. That’s where the
mutex is applied. Although multiple Mongrel threads call “process” on this handler in
parallel, the mutex around the call to the Rails dispatcher ensures that only one
thread has exclusive access to the Rails code base at a time.

In order for a Rails app to service multiple concurrent requests with Mongrel, it’s
necessary to run multiple instances of Mongrel, colloquially referred to as “a pack of
Mongrels.”

Running multiple Mongrels requires more system resources than running a single
instance that can be shared by all the requests. This is one of the main complaints
brought up by those who advocate thread-safety for Rails.

Native Threads
Userspace Threads Kernel Threads

Green Threads OS Threads

There are a few other things that I'd like to mention about threads before we go back
to DHH’s blog entry, and those include the difference between userspace threads

(also known as green threads) and OS threads (which are also referred to as kernel
threads or native threads).

Native Threads are managed by the kernel, which can run them in parallel, routing
them to multiple cores on machines with multicore support.

Userspace threads are managed by a virtual machine. They are not visible to the
kernel, which therefore can’t direct them to different cores for processing. They can
appear to run simultaneously because the VM time slices between them so quickly.

Native Threads
Userspace Threads Kernel Threads

Green Threads OS Threads

Ruby 1.8x

Threads in Ruby 1.8x are userspace threads.

This is one of the reasons why thread-safety has not been a priority for Rails.

Native Threads
Userspace Threads Kernel Threads

Green Threads OS Threads

Ruby [.8x Ruby 1.9%

Ruby 1.9 has native thread support, but | added an * because there is a global lock in
place that prevents more than one thread from executing at a time. One of the
reasons for this is that the not all of the Ruby stdlib libraries are thread-safe.

Native Threads
Userspace Threads Kernel Threads

Green Threads OS Threads

Ruby 1.8x Ruby 1.9%
JRuby
IronRuby

JRuby leverages Java’s mature memory model and strong support for native
threading.

Likewise, IronRuby leverages the CLR’s support for native threading.

Native Threads
Userspace Threads Kernel Threads

Green Threads OS Threads

R“by 1.8x Ruby] 9%
Rubinius#* jRUbY

IronRuby

For Rubinius, the threading API is implemented to use green threads.

Rubinius is starred with a “*” because the plan is for the threading implementation to
switch to use native threads at some point -- and also because Rubinius does have
some native threading support currently in that it’s possible to spawn multiple
Rubinius VMs and map each to a native thread.

MVMAMAMIMVM

Multiple

M Virtual

Machine

MVM

JRuby also has multiple VM (MVM) support, and MVM support is under consideration
for Matz Ruby as well. By Multiple VM support | mean the ability for multiple VMs to
share a single interpreter.

Developers representing the core teams from these and other Ruby implementations
are working together on researching how to best use this capability and on a common
MVM communication protocol.

VMs often come up in discussions about parallelism because they have the potential
to be mapped to native threads.

MVM capability plays a part in the Rails deployment strategies offered by several Ruby
implementations because VMs can run in parallel, and also because they can provide a
degree of isolation or sandboxing for code that runs inside them -- while at the same
time reducing memory requirements by sharing bytecode.

Rubinius : Friday 2008/04/11

01:47:23 evan

it's software people, nothing is impossible.

Evan Phoenix

As Rubinius lead developer Evan Phoenix said on the Rubinius IRC channel last month
during a discussion about VM architecture: it’s software people, nothing is
impossible.

Loud Thinking

Me June 06, 2007 11:28

sbout [Vlultli-core Hysteria and the

Gallery

company | Rread Confusion

Girl

Multiple cores are laughably easy to utilize
Projects {for web applications because our problems

Ruby on : .
... are rarely i the speed ot serving 1 request.

Basecamp 1he problem 1s in serving thousands or
Highrise tens or hundreds of thousands of requests.
Backpack preferably per second.

Campfire

Knyway', in the blog entry | was telling you about, David goes on to say: “Multiple
cores are laughably easy to utilize for web applications because our problems are

rarely in the speed of serving 1 request. The problem is in serving thousands or tens
or hundreds of thousands of requests. Preferably per second.”

So whiles he’s not saying that there are never any scenarios where tapping multiple
CPUs simultaneously would come in handy, he’s saying here that by far the most

predominant use case for multicore technology in the Web application space is
handling concurrent requests.

Request handling is what’s known as an “embarrassingly parallel” task —— one where
multiple cores can easily be exploited because the requests are typically independent
of one another. Sequencing and data distribution are non-issues.

Loud Thinking

Me June 06, 2007 11:28

sbout [Vlultli-core Hysteria and the

Gallery

company | Rread Confusion

“" Threads are not the only way to do
projects that. Processes do the job nearly as

" well with a drop of the complexity.

Basecamp ANd that’s exactly how Rails 1s

Hehnise gealing to use all the cores you can
Backpack

Campfire thrOW at 1t

DHH continues: “Threads are not the only way to do that. Processes do the job nearly
as well with a drop of the complexity. And that’s exactly how Rails is scaling to use all
the cores you can throw at it.”

So, we’re going to be considering the question: Do processes do the job of exploiting
multiple processors well enough -- and is there really a net drop in complexity with
multi-process deployments?

Earlier we looked at the Mongrel source and discussed why it’s necessary to run
multiple Mongrels in order to service multiple Rails requests. | didn’t say it explicitly
at the time but those requests are each running in their own processes. I’'m going to
refer to deployments like that as “multi-process” strategies or “processed-based” —-
as opposed to threaded.

Process

has one :thread

Process

has many :threads

What is the relationship between threads and processes?
A process is allotted its own physical system resources.
A thread belongs to a process.

A process has at least one thread, usually referred to as the “main thread”, but can
spawn multiple threads.

A thread is sometimes referred to as a lightweight process. Because it shares its
parent process’s address space, it can be started from within a process with very little
in the way of additional system resources or the overhead associated with doling
them out.

Conversely, spawning a subprocess is more resource-intensive than spawning a
thread.

Processes

walking = fork do
100.times do
puts "walking"

sleep 1
end
end
chewing = fork do

100.times do
puts "chewing”
sleep 1
end
end

Process.walit(walking)
Process.walt (chewing)

As DHH suggested, processes represent another way to programatically walk and
chew gum at the same time, and processes can be routed to multiple cores.

One way to create a subprocess in Ruby is to call fork. Unlike threads, subprocess
have their own address spaces. Subprocesses each start out as replicas of the parent
process, but when anything changes, those changes are written to the child process’s
own address space.

Processes can only communicate with each other through Interprocess
Communication (IPC) protocols, like pipes. Parent and sibling processes even need
these protocols to communicate with each other.

The wait calls ensure that the child processes will finish before the parent exits. To
indicate to the system that the parent doesn’t plan to wait for the child to finish, use
Process.detach.

If the parent process exits before the child there will be ...

... Zzombie processes.

Speaking of zombie processes, it’s not uncommon for conversations about Rails and
thread-safety to come around to the topic of zombie processes eventually.

| know of Rails deployments that have been plagued by zombie processes taking up
enough system resources to make the system noticeably slower or even using them
all up.

It’s not actually a Rails problem or a problem with most process-based deployments.
It has to do specifically with an older version of apache’s mod_fcgi.

But the zombie process reference has come to represent general dissatisfaction with
aspects of some common multiprocess deployment scenarios.

For example, when Charles Nutter of the JRuby project blogged relatively recently
about a JRuby alternative to typical process-based deployments with Apache, he
wrote, in part, “no more zombie processes.”

://blog.provokat.ca/en/index.ph

http://www.flickr.com/photos/airport/65934250/
These are are the main common complaints with common multi-process deployment
schemes, like Mongrel Cluster, Apache\FastCGl or lighttpd\FastCGl.

Memory: They require too much of it. The Rails framework typically needs to be
loaded in each each process.

Ease: There are too many moving parts involved. The more processes involved, the
harder a deployment is to maintain. Setup is also a hassle.

Speed: This is about latency. With a single shared instance launch time is not as
much of an issue.

Are there good deployment options that don’t involve threading?

http://www.flickr.com/photos/56871332@N00/197941804/sizes/m/
http://www.flickr.com/photos/56871332@N00/197941804/sizes/m/

That’s good. That’s bad.

The children found themselves face to face with a bear.

That’s bad.

It was a baby bear cub.

That’s good.

The cub’s mother was nearby though.

That’s bad.

The mother bear was partial to lemon squares, and the
children happened to have packed some for lunch.

That’s good.

A lot has been changing in the concurrency space since | proposed this talk at the
end of last year. As | was preparing for this talk, | often thought about those folk tales
or clown routines based around the phrases “That’s good” and “That’s bad”.

That’s good. That’s bad.

Rails is not thread-safe, and can’t be deployed on
threaded servers without a lock.

That’s bad.

But you can effectively service multiple concurrent requests
by spawning multiple processes with a load balancer.
That’s good.

Memory requirements are high though,

because Rails must be loaded for each process.
That’s bad.

No need to share Rails if)lou fork after Rails is loaded.
That’s good.

But problems w\the way Ruby handles GC reduce
any memory savings.

That’s bad.

Hongli Lai of Phusion created a patch to address those
C issues, and it’s freely downloadable.

That’s good.

This slide shows how “That’s good\That’s bad” played out with respect to the topic at hand,
summarizes some of what I've talked about, and foreshadows some of what I’m going to be
talking about.

At this point I’d like to analyze Rails from a thread-safety perspective. That way, when the
phrase “not thread-safe” comes up in the rest of the talk it won’t be so much of broad
generalization. You’ll be able to picture some of the particulars.

We’re going to look at ActiveRecord separately, after we look at some of the other Rails
packages. That’s because ActiveRecord is frequently used outside of Rails, for example as the
ORM for a Merb application. So it makes sense to consider whether ActiveRecord can be run in
a threaded environment apart from whether there are thread-safety issues with its Rails
integration.

Application Information
Google Code Home > Google Summer of Code > Organization Information > Application Information

Title Rails Thread Safety
Student Joshua Peek

Mentor Michael Alan Koziarski
Abstract

The goal of the project would be to make the Rails framework as thread safe as

possible.

Snurgﬁ Browser Commits
thread safe all branches al
/. i fork watch 4 download
Ruby on Rails

Code) (Go)

The big news on the Rails and thread-safety front is that the goal of Rails committer Josh
Peek’s Google Summer of Code Project is to focus on Rails and thread safety. Rails core team
member Michael Koziarski is his mentor for the project.

The goal of the project is actually to make Rails thread-safe in production mode. What would
be the purpose of thread-safety for development mode? Development mode depends on
being able to reload files before every request, so there’s a short feedback loop. Maybe some
day after its safe to run multithreaded Rails in production mode, someone will work on a
collaborative development environment that keep developers from overwriting each other’s
changes.

There has been more interest in resolving thread-safety issues in Rails as the concurrency
polices of the different Ruby implementations have been evolving to support native threads.

Josh will be doing a lot of analysis and design work. Testing will be involved to some extent,
but its important to remember that you can’t guarantee that something is thread-safe just
because they have not shown up in testing.

You can follow Josh’s progress on the thread_safe branch he created on github.

He’s just now getting started with the project, but he’s already posted some interesting
code.

UPDATE: Josh has discontinued his thread_safe branch in favor of creating multiple branches
that each address a single issue related to thread-safety. For example, the his preload branch
(http://github.com/josh/rails/tree/preload) includes the fixes for the Dependencies-loading
issue described on the next slide. It will be easier to merge the changes into Edge Rails as
they are ready to be checked in, as opposed to trying to merge in all the changes from a

monolithic thread_safe branch at the end of the summer. <=

N

some_model.rb :

class SomeModel

sleep 0.5 # arbitrary delay to make
def self.is fully loaded

true
\
‘é§>' end
eg& '3 end
\9 { A 4| e
- @
¢ & |
%\Q & executing code :
o
’8) é?%ﬁ?
O threads = []
¥ S P
é\r QQ: 06 &‘}\ threads << Thread.new do
“§$' <$§<S? & SomeModel.is fully loaded
& N end
<
<§§ ‘é$' threads << Thread.new do
Qi§~ SomeModel.is fully loaded
end

threads.each(&:join)

http://dev.rubyonrails.org/ticket/9155

One of the first things he will be tackling is the Dependencies loading system.

The Dependencies module is the magic that frees you from needing to use explicit “require”
statements in your code. When Rail encounters a constant it doesn’t know about in the
course of running your code, in development mode and in production mode -- it’s
const_missing from the Dependencies module that triggers a search through all load paths
your Rails environment knows about, and loads the necessary files.

Catfish does a good job of demonstrating the problem when Rails is running in multi-
threaded mode in the ticket he posted in the old Rails Trac instance.

He created a model called SomeModel with a method called is_fully_loaded and describes a
scenario that’s likely to play out if you run his sample code a few times. The first thread’s call
to is_fully_loaded on SomeModel initiates the file loading by way of the const_missing code.
While the file is in the process of loading, the second thread calls is_fully_loaded. It’s possible
for the second thread to call is_fully_loaded after the constant SomeModel is loaded, but
before the is_fully_loaded method is defined. Class loading in Ruby is not atomic.

The solution Josh is working on is a preload module, which takes care of pre-loading all the
constants before Rails processes any requests in production mode.

FILE EXIST CACHE=
ActiveSupport: :Cache.LookupStore(:memory store)

One of the other things Josh is doing is experimenting with leveraging the cache store classes
that come with ActiveSupport for the kinds of caches that are typically stored in class
variables today.

UPDATE: Josh has put this experiment on hold for now to investigate whether any of these
caches can be populated and frozen at initialize time, as an alternative to a solution that
involves locking. As you will see in the next few slides, the initial solution involved

implementing synchronization for the cache store’s read, write and delete routines. <=

class Store

def threadsafe!
@mutex = Mutex.new
self.class.send :include, ThreadSafety
self

end

def read(key, options = nil)
log("read", key, options)
end

def write(key, value, options = nil)
log("write", key, options)
end

def delete(key, options = nil)
log("delete", key, options)
end

def delete matched(matcher, options = nil)
log("delete matched", matcher.inspect, options)
end

end

Here’s the class that all the cache stores (file_store, mem_cache_store, etc) extend.

The Rails core team plans to support the option of making the Store class thread-safe but the
exact mechanism has not yet been determined. Currently there’s a method called “thread-
safe”...

class Store

def threadsafe!
@mutex = Mutex.new

self.glass.send :include, ThreadSafet
self
end module ThreadSafety

def read(key, options = nil)

@mutex.synchronize { super }
end

def read(key, ¢
log("read",
end
def write(key, value, options = nil)

def write(key .
' @mutex.synchronize { super }

log("write",

end end

def delete(key def delete(key, options = nil)
log("delete" @mutex.synchronize { super }

end end

def delete_matc def delete matched(matcher,
log("delete n options = nil)

end

@mutex.synchronize { super }
end

end

end

...loads a module that overrides several Store methods with synchronized versions of those
methods. This method needs to be called before Rails processes any requests. There’s
currently no way to enforce that, but in the future, when ActionPack is officially thread-safe,
it may be called from the initialize method in Store, based on whether Rails is running in
multi-threaded mode.

actionpack/lib/action_view/helpers/asset_tag_helper.rb

+ FILE EXIST CACHE ActiveSupport::Cache.lookup store(:memory store)

private
def file exist?(path)
@@file exist cache ||= {}
if !(@@file exist cache[path] ||= File.exist?(path))
@@file exist cache[path] = true

A\

\

false

if FILE EXIST CACHE.exist?(path)

FILE EXIST CACHE.read(path)

else

true

exist = File.exist?(path)

FILE EXIST CACHE.write(path, exist)
exist

+ + +

\ \

end
end

http://github.com/josh/rails/commit/300426e21e92a21286bd99165d76866b0dfec359

Here’s an example where he has substituted a class variable with an ActiveSupport::Cache-
based store.

It does some caching in AssetTagHelper, the module that contains javascript_tag, image_tag
and friends.

The mechanism for making ActiveSupport::Cache thread-safe has not been determined yet.

The premise is really :

really simple to understand: Heckle SEES thIS COde and
mutates every colored element,

just to make sure you checked

them.

1. % Your tests should pass.
2. % Break your code.
3. % Now they should fail.

1T becomes unless, calls get
replaced, numbers get changed,
get changed, etc.

1f month > 12 then
1T month % 12 == (0 then
year += (month - 12) / 12
month 12
else
year += month / 12
month month % 12
end
end

http://github.com/josh/thread_heckler/tree/master http://ruby.sadi.st/Heckle.html

In conjunction with his Thread safety branch he started working on Thread Heckle, an
experimental version of Heckle customized for trapping thread-safety violations.

The text with the black background is taken from the Heckle page at the Ruby Sadist
site (http://ruby.sadi.st/Heckle.html.

In case you are not familiar with Heckle, it’s a plugin that mutates your code on the
fly and runs your tests to determine how meaningful your tests are. For example, it
might dynamically replace strings with random characters before running tests. If
your tests still pass after a string is mutated, you clearly don’t have tests that care
about the value of that string. Heckle even replaces conditional constructions like if,
while, unless or until.

Heckle is able to identify branching constructs and provides a mechanism for
generating a large number of different execution paths.

Josh has been thinking about the best way to use Heckle’s infrastructure to simulate
concurrency edge cases. He’s added code to thread tests when Heckle runs them, as
well as a mechanism for adding Thread.pass calls at random times. Thread.pass
directs the thread-scheduler to switch to another thread.

UPDATE: Josh has discontinued his thread_heckler experiment. Traversing all the
branching constructs for a project the size of Rails was taking too long. And this tool
was not catching threading issues that were not fairly obvious. <=

While it’s big news that Josh is going to focus on Rails and thread-safety, the Summer
of Code does not mark the first time Rails developers have addressed thread-safety

http://ruby.sadi.st/Heckle.html
http://github.com/josh/thread_heckler/tree/master

Time.zone="Eastern Time (US & Canada)"”

Core committer Geoff Buesing added time zone support features to Rails for the 2.1 release.
With the code on this slide, the Rails-wide time zone becomes Eastern Time. For his initial
check-in, zone was an class instance variable for the Time class, and therefore shared among
threaded requests.

trunk/activesupport/lib/active _support/core_ext/time/zones.rb

module ClassMethods
attr reader :zone
def zone

Thread.current[:time zone] w

end

def zone=(zone)
@zone = get zone(zone)

def zone=(time zone)
Thread.current|[:time zone] = get zone(time zone)

end ‘g\\\~

http://dev.rubyonrails.org/changeset/8718

But soon after that he decided it was worth his while to make the Time Zone handling
thread-safe, and instead of using a class instance variable for storage, he used a
thread-local variable. Here’s part of the change-set. The syntax for thread-local
variables is hash-like, as if Thread.current was the hash identifier. Here you can see

how to set a thread-local variable and also how to retrieve its value.

trunk/activeresource/lib/active_resource/connection.rb

def http

unless @http
@http = Net::HTTP.new(@site.new(@site.host,
@site.port)

/ @http.use ssl = @site.is a? (URI::HTTPS)
"”’):;

d

@http

http = Net::HTTP.new(@site.new(@site.host,
@site.port)
http.use ssl = @site.is a? (URI::HTTPS)

/ http
end

http://dev.rubyonrails.org/changeset/8167

Here’s part of a change set that makes ActiveResource more thread-safe. It replaces
the code that caches the http object in an instance variable for the Connection class
(which is shared among requests) with code that creates a new http object whenever
the resource needs to communicate with the remote server.

It might seem that the main thread-safety issue here is that the site port or host
could be different for different threads, but in practice neither the application code or
the framework code change this value once it is set.

$ cd /tmp/sample
¥ cat > requests.rb
module WebService
class Book < ActiveResource::Base
self.site = "http://localhost:3000"
end
end A

before = Book.count

Thread.abort on exception = true
threads = []
100.times do
threads << Thread.new do
WebService: :Book.create(:title => "Ruby")
end
end
threads.each(&:join)

http://dev.rubyonrails.org/changeset/8167

Here’s the trac ticket, which was initiated by kou. If 100 books are created using the
ActiveResource API, invariably

puts Book.count - before

¥ script/runner requests.rb
fusr/lib/ruby/l.8/net/protocol.rb:176:in "write0': You have a nil object when
You might have expected an instance of Array.

The error occurred while evaluating nil.+ from /fusr/lib/ruby/l.B8/net/pr

from
from
from
from
from
from
from

fusr/lib/ruby/1.
fusr/lib/ruby/1l.
fusr/lib/ruby/1.
fusr/lib/ruby/1.
fusr/lib/ruby/l.
fusr/lib/ruby/1.

B/net/protocol.rb:lé6:in “writing'’
B/net/protocol.rb:150:in “write'
B/net/http.rb:1540:in “send request with body'’
B/net/http.rb:1525:in “exec'
B/net/http.rb:104B:in “request’
B/net/http.rb:B45:in "post’

ftmp/sample/vendor/rails/activeresource/lib/active resource/conn

- 17 levels...
scriptfrunner:S:i:;“eval'

from
from
from
from

ftmp/sample/vendo

rajils/railties/lib/commands/runner.rb:45

script/runner:3:in “require’

script/runner:3

€

'script/runner requests.rb’ should output '100".

http://dev.rubyonrails.org/changeset/8167

...this error shows up when a method is called on a “nil object” in the net library code.
It turns out that the net::http library is not thread-safe. Behind the scenes its using
instance variables to track its buffer state, and it gets confused when these values are

modified in different threads.

Putting a mutex where the http object is used in the Rails code would be one way to
fix the problem, but it was decided to go with instantiating a new http object for each

transaction.

class CGI

def env_table
ENV
end

end

| want to address cgi.rb and thread-safety because I’ve heard people cite dependence
on cgi.rb as one of the reasons why Rails is not thread-safe. Rails uses the CGIl web

protocol as part of its request processing.

There are thread-safety issues in cgi.rb, but Rails does not use cgi.rb in a non-
threadsafe manner.

This top snippet of code is from cgi.rb, and you can see that it uses an environmental
variable that could not be shared across requests without a Mutex: ENV.

class CGI

end

module Mongrel
class CGIWrapper < ::CGI
def env _table
@request.params
end
end
end

However Rails does not use the cgi.rb ENV variable.

It uses a CGIWrapper with env_table overriden to reference the @request instance
variable. The CGl::Wrapper redefinition of env_table is the bottom code snippet.

m Ezra Gets Rails® On Rack

Inside POST BY PETER COOPER

Permanent Link | o Del.icio.us | Cosmos

http://www.rubyinside.com/rails-on-rack-872.html

Speaking of cgi.rb —-- as it turns out, in just the last couple of months, Ezra
/ygmuntowicz, who

most of you probably know, is the creator of Merb and a co-founder of EngineYard
added

support for the Rack web server interface to Rails, and removed references to cgi.rb
in the

process. He did the work in his own github branch, but it was with the understanding
that he

would merge the changes into EdgeRails not long after the imminent 2.1 release.
Ezra was able to make some nice improvements, but he didn’t make changes that
correct thread-

safety violations, explicitly.

UPDATE: Edge Rails is now Rack-enabled. Ezra’s Rack-related changes were merged
in, but the CGI dependencies will not be removed until the Rack\Rails integration
code is tested more. For more details, read this Rails core mailing list thread: http://
groups.google.com/group/rubyonrails-core/browse_thread/thread/
237bb20d25ef7e57/141d0a9d825a7cb9?Ink=gst&q=Rack#141d0a9d825a7cbh9. <=

There is one change that Ezra made to the version of Rails in his branch that’s
especially

relevant to this talk: he changed the placement of the Mutex so that it protects less of
the Rails codebase.

http://www.rubyinside.com/rails-on-rack-872.html
http://www.rubyinside.com/rails-on-rack-872.html

Mongrel RailsHandler

class RalilsHandler < Mongrel::HttpHandler

def initialize(dir, mime map = {})
@guard = Mutex.new

end

def process(request, response)

cgl = Mongrel::CGIWrapper.new(request, response)

@guard.synchronize {

Dispatcher.dispatch(cgi,
ActionController: :CgiRequest: :DEFAULT SESSION OPTIONS,
response.body)

end
end

| want to clarify some things about the lock and its placement, for those of you who are going
to look at the Rails source to see for yourself.

First of all, here’s the code from the Rails handler packaged with the most recent version of
Mongrel. We looked at this a little while ago.

It wraps the entire “dispatch” call, which includes dispatcher callbacks, route recognition, and
controller instantiation.

Changeset 8488
Timestamp:|12/27/07 (5 months ago)

Author: bitsweat

Message: Introduce native mongrel
handler and push mutex into dispatcher.

trunk/actionpac T 1D (2 diffs)
trunk/rai tles/CH NGELOG (1 diff)
trunk/railties/lib/commands/server.rb (2 diffs)

trunk/railties/lib/commands/servers/new_mongrel.rb

|
trunk/railties/lib/rails/mongrel_server

|

|

- L L.

trunk/railties/lib/rails/mongrel_server/commands.rb
trunk/railties/lib/rails/mongrel_server/handler.rb

Core team member Jeremy Kemper moved the lock from the Mongrel handler source to the
Rails source, shortly after Rails 2.0 was released.

He did not change the Mongrel code base to remove the lock.

[railties/lib/rails/mongrel_server/handler.rb

class RailsHandler < Mongrel::HttpHandler

def initialize

end

def process(request, response)

cgl = Mongrel::CGIWrapper.new(request, response)

~h ra ..,

Dispatcher.dispatch(cqgi,
ActionController: :CgiRequest: :DEFAULT SESSION OPTIONS,
response.body)

end
end

He introduced this Mongrel handler without a lock to the Rails code base, and made the
necessary changes to the Rails default Mongrel script so that this handler would get loaded by
Mongrel in lieu of the one packaged with Mongrel.

actionpack/lib/action _controller/dispatcher.rb
def dispatch

run callbacks : before
handle request
rescue Exception => exception
failsafe rescue exception
ensure

run callbacks :after, :reverse each

@Qguard.synchronize do
begin
run_ callbacks :before
handle request
rescue Exception => exception
failsafe rescue exception
ensure

run callbacks :after, :reverse each
end

end
end

http://github.com/rails/rails/commit/e2d4ebdea4eab4 | c4afl c5530a9e180d I [529dec

...And in the same change set, he added the lock to the Dispatcher code inside of Rails. That

way it would be easier for Rails committers to adjust it as the Rails code base becomes more
thread-safe.

UPDATE: Since | gave this talk, Rails 2.1 has been released. This is the Rails 2.1
Dispatcher#dispatch. <=

http://github.com/rails/rails/commit/e2d4ebdea4eab41c4af1c5530a9e180d11529dec

actionpack/lib/action _controller/dispatcher.rb
def dispatch

def handle request
@controller = Rol{ing: :Routes.recognize(@request)

@controller.procesg (@request, @response) .out (@output)
end

@@guard.sylkRchronize do
begin

———) run callbackg :before
= handle request

rescue Exception => exception
failsafe rescue exception
ensure
—_— run callbacks :after, :reverse each
end

end
end

http://github.com/rails/rails/commit/e2d4ebdea4eab4 | c4afl c5530a9e180d I [529dec

Here’s another view of the Mutex-wrapped Dispatcher code with arrows pointing to the
methods protected by the mutex, and the source for the protected method, handle_request.

What Ezra did in dispatch_rack, which currently only exists in his branch, is split out the
Routing::Routes.recognize call and the controller.process call from handle_request...

http://github.com/rails/rails/commit/e2d4ebdea4eab41c4af1c5530a9e180d11529dec

actionpack/1lib/action_controller/dispatcher.rb

def dispatch rack(env = {}, session options =
ActionController: :RackRequest: :DEFAULT SESSION OPTIONS)
@request = RackRequest.new(env, session options)
@response = RackResponse.new
begin
run_callbacks :before dispatch
@Qcontroller = Base.router.recognize(@request)

@@guard.synchronize do
@Qcontroller.process (@request, @response)

end
rescue Exception => exception :€§§‘
failsafe rescue exception ‘Qéa\J
ensure \ (’a‘
run callbacks :after dispatch, ‘an -
tenumerator => :reverse each (00‘0 ‘ 6“3‘:\
end eﬂ» éﬁ

rescue Exception => exception
failsafe rescue exception
end
end

...s0 that he could see what would happen if they were called outside the lock.

He hasn’t run it very much yet, but so far the results are promising. | want to emphasize
though, that despite the fact that testing can be helpful, it does not mean that something is
thread-safe just because it was threaded and nothing bad happened.

module ActionView

class TemplateFinder

def process view paths(*view paths)
view paths.flatten.compact.each do |dir|
next 1f @@processed view paths.has key?(dir)
@@processed_view_paths[dir] = []
(Dir.glob("#{dir}/**/*/**")
| Dir.glob("#{dir}/**")).each do |file|
unless File.directory?(file)
@@processed view paths[dir] << file.split(dir).last.sub(/"\//, '")
extension = file.split(".").last
if template handler extensions.include? (extension)
key = file.split(dir).last.sub(/"\//, '').sub(/\.(\w+)$/, '")
@Rfile extension cache[dlr][key] << extension
end

end

module ActionView
module TemplateHandlers

module Compilable
def create template source(template, render symbol)
body = compile(template)
self.template args[render symbol] ||= {}
locals keys = self.template args|[render symbol].keys
template.locals.keys
self.template args[render_ symbol] =
locals keys.inject({}) |h, k| h[k] = true; h }

"def #{render symbol} (local assigns)\n#{locals code}#{body}\nend"
end

end

In both methods shown here, the code that modifies class variables is not thread-
safe. There’s not much to look at. What you can’t see here is that these methods
represent the kind of refactoring I've seen in a number of places since Rails 2.0 was
released. Both the Compilable module and the TemplateFinder are constructed from
methods that were loose in the ActionView file. There are now fewer class variables in
ActionView and it’s easier to identify where synchronization is needed than when
these class variable were scattered throughout ActionView.

UPDATE: The TemplateFinder code has been reconstituted using the new
ActionView::ViewLoadPaths class in Edge Rails. <=

There are few additional known thread-safety issues in ActionController and
ActiveSupport. In the course of his analysis Josh will likely find some others.

Now let’s move on to ActiveRecord.

For some reason the question of whether ActiveRecord is thread-safe seems have an
air of mystery around it.

e i“*l:'hﬁ

blijograph ‘Wuldern
= home 2 S —hio=t Gnﬁe to; Cru nan il

search

Threading in Rails aol

| decided to buck the community
conventional wisdom and try to
use in a Rails app.

Jonathan Rochkind

http://bibwild.wordpress.com/2007/08/28/threading-in-rails/#more-53

| know of some people who have used and are continuing to use ActiveRecord in threaded mode without
incident.

Jonathan Rochkind wrote about his experiences with using ActiveRecord with threads in his blog last summer.
| touched base with him a few weeks ago, and he confirmed that the application he wrote about is still in
production, and he had not had any problems with it.

He needed to query Google, Yahoo, and some other search engine APIs, so he started a thread for each Web
service. And wanted to process all the results before returning a response to the user. He accomplished this
by calling join on each thread, also from the same controller action.

He explains that he was careful to give each thread its own copy of any Rails framework classes it needed to
do its work.

One other thing I'd like to point out about this example, is that it’s a great example of where userspace
threads can be very useful. As | mentioned before, two userspace threads can’t actually run at the same time,
they only appear to run simultaneously because the VM time slices between them so quickly.

But there’s a clear benefit to getting the queries started for each search engine as close to the same time as
possible, as opposed to querying one and waiting for the results to come back before initiating a query with
the next one.

In his blog entry, Jonathan also describes his home-grown solution for handling long-running tasks. He starts
the jobs in threads in a controller action, but does not call “join” for any threads. As they progress, the jobs
deposit status values in the database, where they can be retrieved on demand or periodically via AJAX, and
displayed to the user.

| know, and Jonathan acknowledges in his blog, that the recommended way to handle asynchronous
processing is to use a plugin that creates background jobs. | don't want to focus on that aspect of his design
in this talk, but here’s a link to the slides for a RailsConf 2008 talk about background processing: http://
railspikes.com/2008/6/3/asynchronous-railsconf-2008

Not many people are running active record in threaded mode, and of those who are, fewer have been
successful with it. Jonathan is in the minority.

I’ve read a number of mailing list posts that that say things like “When | try multi-threading with
ActiveRecord ...

Weird Thiv}g
Happene

.... weird things happen!”

And yet there are no known ActiveRecord bugs. No one has reported these bugs in the bug
tracker.

| think there are several reasons for the confusion and uncertainty. One is that thread-safety bugs
are not always easy to reproduce. But there are also reasons that are particular to ActiveRecord.

First of all, Rails opens one connection per thread, and doesn’t automatically close them when the
thread dies. So if you create 100 threads, Rails will try to open 100 database connections. It’s
easy to reach the maximum number of allowed connections if you don’t implement your own
connection pool or otherwise manually manage database connection allotment.

There’s actually a very simple way to handle the proliferation of connections, that may be all the
connection management that’s needed for basic threading scenarios, such as the ones Jonathan
Rochkind blogged about. Calling verify_active_connections takes care of closing the connections
for any threads that are no longer active —- but it’s never been very well publicized. It can be
called after threads are finished with their work.

Also, as we saw ActionPack is not thread-safe. Some of the weird problems developers may have
had can probably be attributed to developers spinning threads from within Rails controllers and
running into weird ActionPack thread-safety bugs.

There’s the possibility that they ran into ActiveRecord bugs that have nothing to do with thead-
safety. It has not seen a lot of use in that mode; it has not been put through its paces in many
multi-threaded environments.

environment.rb

ActiveRecord: :Base.allow concurrency = true

Another reason why people might have had trouble with ActiveRecord is that
apparently it is not common knowledge that you need to set
ActiveRecord::Base.allow_concurrency to true in environment.rb in order to run in
threaded mode. Otherwise, Rails will only allow a single database connection.

It’s false by default. | don’t think the problem is that developers expect it to be true

by default. From mailing list archives it looks like a fair number of developers just
didn’t know the flag existed.

module ActiveRecord
class Base
class ConnectionSpecification
class << self

def thread safe active connections
@Ractive_ connections[Thread.current.object id] ||
end

{}

def single threaded active connections
@Ractive connections
end

if @QRallow concurrency
alias method :active connections,

1 :thread safe active connections
else

alias method :active connections,

a :single threaded active connections
en

end
end
end

T
d
T

ne code fragment here shows where Rails looks at the ActiveRecord’s
low_concurency flag, and how ActiveRecord stores the connections by

nread.current.object_id in an @@active_connections hash, if allow_concurrency is set

to true.

ActionController::Base
Rails 2.0.2

Controls whether the application 1is thread-
safe, so multi-threaded servers like WEBrick
know whether to apply a mutex

around the performance of each action.
Action Pack and Active Record are by default
thread-safe, but many applications

may not be. Turned off by default.

@@allow concurrency = false

cattr accessor :allow concurrency

Rails 2.1

Indicates to Mongrel or Webrick whether to
allow concurrent action processing. Your
controller actions and any other code they call
must also behave well when called from
concurrent threads. Turned off by default.

H= FH= FH= FH H H FH

FH= H H= H =

It probably doesn’t help matters that there’s an @@allow_concurrency flag in
ActionController::Base, as well as an @@allow_concurrency flag in ActiveRecord::Base.

The ActionController::Base comment on the top of this slide is confusing and
misleading. It says that ActionPack and ActiveRecord are thread-safe by default,
which could lead developers to think it’s okay to run threaded code within Rails
without protecting the framework classes.

| don’t believe that this comment was meant to be misleading. | just think no one on
the Rails core team had looked at it in a long time.

As soon as | pointed this comment out to Jeremy Kemper when | noticed it as | was
preparing this talk, he changed it to the clear comment you see on the bottom part of
the slide.

UPDATE: the @@allow_concurrency flag in ActionController::Base has been removed
in Edge Rails. <=

ActiveRecord: :Base.allow concurrency = true

¢

Still there’s one unexplained mystery. Ezra claims that once when he was
experimenting with ActiveRecord with allow_concurrency set to true he saw the
results for a query that was executed in one thread appear in a different thread. Since
he’s an expert in the field, we can rule out some of the reasons | just mentioned as
potential explanations for what he saw. He’s well aware of connection management
semantics and knows the implications of the various settings.

| touched based with him and asked him if he had seen this behavior recently. He said
that he has not run AR in threaded mode since having that experience. He said that
“the per thread connections and manual cleanup” are part of why he recommends
using a lock around any Merb code that references ActiveRecord, but that the main
reason why he did not have a lot of incentive to spend time tracking down the source
of what he characterized as hard-to-reproduce bugs was that he found that with
green threads, ActiveRecord performed much better in single-threaded mode than in
locked\threaded mode.

n|CkS|Eger / ralls Echrk__ _watch__ iduwnluad__

rails/rails
Ruby on Rails
hitp://rubyonrails.org
git://github.com/nicksieger/rails.git

Code -::'-En:--

all bra{Bches all tags

1-2-stable

2-0-stable
connection_pool
databases_rake_regexp
master

activerecord/lib/active_record/connection_adapters/abstract/connection_pool.rb

def allow concurrency=(flag)
if @@allow concurrency != flag

@@allow concurrency = flag
1f flag
self.connection pools lock = Monitor.new
else
self.connection pools lock = NullMonitor.new
end
end

end

That mystery may never be solved, but in the future there will not be so much
mystery around thread safety and ActiveRecord.

For one thing Josh will be including ActiveRecord in his analysis and putting it
through its paces along with the rest of the Rails code base.

For another, JRuby team member Nick Sieger is working on adding connection pool
support. When he’s ready to check in his code, the plan is for the connection pool to
be used regardless of whether you are running multiple threads. The same logic
executes even if the pool size is 1. Manual connection management will no longer be
required.

The old ConnectionSpecification file had a fair amount of branching logic, with
different paths taken depending on whether allow_concurrency was true or not.

The code Nick has added to AR ConnectionSpecification is very DRY.

The only place the allow_concurrency flag needs to be checked is where the pool
determines whether to use a null mutex or a real one. (Actually he’s using a monitor
here, not a mutex. The main difference between a monitor and a mutex is that you
can have nested locking statements with a Monitor.)

activerecord/lib/active_record/connection_adapters/postgresql_adapter.rb

@async = config[:allow concurrency]

def execute(sql, name = nil) #:nodoc:
log(sgql, name) { @connection.exec(sql) }
log(sgl, name) do
if @async
@connection.async exec(sql)
else
@connection.exec(sql)
end
end
end

Here’s another patch that, like connection pool support, adds something that makes
ActiveRecord more friendly to threading, though not more thread-safe.

It calls the async version of exec, instead its synchronous counterpart, on the native
postgres driver.

Without this patch, Rails was basically unusable with the native postgres driver in
multithreaded mode. When one userspace thread is blocked, all the other threads in
the same process are blocked. So any time one thread had to wait for a db resource,
none of the other threads could service requests.

Now the native postgres driver async_exec implementation tests the connection to
see if the server is busy before invoking the db. If the server is busy, the thread is put
to sleep until the server is available —- giving the Thread Scheduler an opportunity to
context-switch to other threads.

A similar patch was added for the Oracle native drivers.

Actually, any C extension would cause similar blocking issues with userspace threads
without some kind of async support.

Now that we've seen some of the reasons why Rails is not thread-safe, we'll take a
high-level look at different ways that developer working with different
implementations of Ruby have addressed the memory, ease of use and speed issues
that have plague typical processed-based deployments.

We'll start with Ruby 1.8.

Evented Mongrel

>+ | hin <

One option Rails developers have is Single Threaded event-driven deployments using
Evented Mongrel, Thin or Ebb. Evented Mongrel has been around for a little more
than a year, but both Thin and Ebb are relatively new. All three servers support both
threaded and event-driven modes.

In event-driven mode, they only process one request at a time by design, so it seems
counter-intuitive that they could perform better in event-driven mode than in
threaded mode -- but the overhead from running threads and context switching
should not be discounted. And with Ruby 1.8, there’s no way to leverage multiple
cores. So there’s overhead without a lot of payoff. It’s not uncommon for Merb
developers to use these servers in evented mode even though they have the option of
running in threaded mode.

Where evented mode doesn’t work so well is for slow actions, which bring the event
loop to a standstill.

Both Thin and Ebb now offer a solution, but it won’t work for Rails as long as Rails
isn’t threadsafe. You can list long-running actions in a config file, and there’s a

mechanism in place for them to spawn threads for long-running actions so they won’t
block the rest of the event loop.

Some links:

eEvented Mongrel (http://swiftiply.swiftcore.org/mongrel.html)
eThin (http://code.macournoyer.com/thin/)

oEbb (http://ebb.rubyforge.org/)

SwitchPipe

Apache / Nginx / anything really..
oA A

v v W

> | hin <

Merb App Perl HTTP Daemon Ramaze App

. Rails App . Camping App

SwitchPipe

SwitchPipe does all the babysitting, launching, and management of its backend apps!

SwitchPipe (http://switchpipe.org/) represents an improvement over standard
clustering.

Its logo characterizes it as doing all the “babysitting, launching, and management of
its backend processes.”

It sits in front of a Web Server like Apache or Nginx and launches, and then manages
the number of apps its configured to handle based on a supplied min and max
number of processes and a time out.

SwitchPipe does what it can on the memory management side. It provides over a
typical cluster is that it will shut down instances based on a specified time-out, so the
max number of instances are not always running.

It emphasizes ease of use over performance, but setting the min number of processes
to 1, yields modest performance gains. If one process is kept running, there’s no
start—-up penalty.

LITEXPEED

TECHHOLOGIES

Litespeed (http://www.litespeedtech.com/) is not open source, but a free edition is
available in addition to the enterprise edition. It spawns Rails applications on
demand, manages them, and takes care of load balancing.

Speed is the attribute that it emphasizes the most in its literature. A big part of their
approach to reducing startup time is to load the Rails framework and then fork child
processes. | explained earlier that a child process starts off life as a replica of the
parent process. Leveraging fork, Litespeed only incurs the overhead associated with
loading the framework once for all the spawned Rails application instances.

Additional speed gains come from Litespeed’s optimized communication protocol.

| should add that there’s been some confusion about whether multiple cores are ever
utilized with the free edition -- partly because there’s a setting called multi-core that
is set to 1 in its configuration. As it turns out there’s nothing to stop the application
instances from being routed to multiple cores with the free edition. The multi-core
setting just controls whether the Isshtpd processes are mapped to multiple cores.
Serving static assets is an example of what might be impacted by the setting.

|i| assenger

laila deploymant that just worka

Passenger (http://www.phusion.nl/products.html) is the newest server on the block.

It makes deployment on shared hosts as easy as just uploading files. Built on top of
Apache, Passenger fills a void in the shared host space, where Ruby applications

frequently require special handling.

The Passenger team has also focused on performance, posting impressive numbers.

However, what makes Passenger stand out more than anything else, in my opinion, is
the way it addresses the memory issue.

http://www.flickr.com/photos/56871332@NO00/19794 1804/sizes/m/

http://www.flickr.com/photos/5687 1332@NO00/197941804/sizes/m/

As you have seen there has been a lot done to improve on the cluster-based model
for deploying Rails apps in the area of user-friendliness, including both initial
deployment and maintenance. Performance has been addressed as well.

But none of the other options we looked at so far make a significant dent in the
memory problem.

http://www.flickr.com/photos/56871332@N00/197941804/sizes/m/

lil passenger

Railz deployment that just works

http://www.flickr.com/photos/5687 1332@NO00/197941804/sizes/m/

The Phusion developers who created Passenger, found an innovative way to make a
huge difference.

They knew that forking subprocesses after loading Rails could yield much greater
memory savings than it did in practice. Unix systems support a policy called called
“copy on write”, which allow a child process and a parent process to share the same
memory up until the point where one of them makes a change. they had seen it work
with Perl, but Ruby’s garbage collector prevents this policy from providing any
memory savings because of the way it marks objects themselves, as opposed to
keeping track of object status in a table. Once Ruby’s garbage collector marks a page,
the OS will assume it can’t be shared -- even if the child process didn’t make any
changes to it.

Phusion created a patch that makes Ruby “copy-on-write” friendly. They are offering
it to the Ruby community for free. To find out the latest about whether the patch will
make it into Ruby 1.9 -- and to learn more details about Passenger, you’ll have to go
to the Passenger talk on Sunday, June 1.

UPDATE: Here are the slides from the Passenger talk at RailsConf on June 1: http://
assets.en.oreilly.com/1/event/6/mod_rails_%20Easy%20and%20Robust%
20Deployment%200f%20Your%20Ruby%200n%20Rails%20Applications%200n%
20Apache%20Webservers%20Presentation.pdf

Since June 1, here is how the Phusion Ruby Enterprise Edition site FAQs (http://
www.rubyenterpriseedition.com/faqg.html#fork) address the question “Why did you
fork Ruby?”:

http://www.flickr.com/photos/56871332@N00/197941804/sizes/m/

My previous attempt implements the marking table with a set structure. In part 3, Dan4Z2 said tha
me in the past, but | thought it was infeasible because | thought the bit field will have to cover the

| wrote my own memory pool implementation, for allocating entries in the pointer set/marking tak
routine to only modify some flags if they need to be modified (so that that part doesn’t mark pag
also reset the marking table after a [...]

The marking table now uses a set instead of a full hash table. This set implementation is based o
two fields from the hash table entry structure, so my set structure uses 8 bytes per entry instead
you're [...)

The early development of what eventually became the Ruby Enterprise Edition is
chronicled in a multi-part series on Phusion developer Hongli Lai’s blog (http://
izumi.plan99.net/blog/).

It’s an interesting read. | would go so far as it say | found it inspirational. Upon
learning that ruby-core behavior is responsible for preventing copy_on_write from
saving memory —- so many developers would have stopped pursuing the idea. He
doesn’t let any discouraging comments stand. If a reason is given for why something
won’t work, Hongli tries it out for himself. He rarely takes anyone’s word for it where
language behavior is concerned.

| Rub ’ @ powers web applications

public void process

(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
final RackApplicationFactory rackFactory = getRackFactory

()7
RackApplication app = null;

try |
app = rackFactory.getApplication();
app.call (request) .respond(response) ;
} catch (Exception re) {
handleException(re, rackFactory,request, response);
} finally {
1f (app != null) {
rackFactory.finishedWithApplication(app);
}

Multiple JRuby VMs can run in a single process. This is important feature for JRuby,
not just because its support for deploying Rails is based on it, but also for the way it
implements system calls. Without the MVM mechanism, JRuby would need to start a
new process for every system call, and starting a new process is expensive for JRuby,
since it means spawning a new Java Virtual Machine.

The JRuby strategy for handling multiple concurrent Rails requests, given that Rails is
not threadsafe, is to use a pool of JRuby VMs, each with the Rails environment pre-
loaded. Needing to run multiple VMs per Rails application may sound like an
expensive proposition memory-wise, but it helps that the VMs can share JVM
bytecode, while still providing application-level isolation.

With the new JRuby-Rack-based deployment mechanism (http://
git.caldersphere.net/?p=jruby-rack.git;a=summary), the dispatcher, shown here is
the same for a Rails installation as it is for Merb and other thread-safe frameworks,
but ...

i l Rub ’ @ powers web applications

public void process
(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

final RackApplicationFactory rackFactory = getRackFactory();
RackApplication app = null;

try {
app = rackFactory.getApplication();

app.call (request) .respond (response) ;

} catch (Except'public class PoolingRackApplicationFactory

héndleExceptl implements RackApplicationFactory {
} finally {
. '= e o o
1t (app != nu public RackApplication getApplication()
rackFactory

throws RackInitializationException {

}

return realFactory.getApplication();

}

..Rails deployments provide a PoolingRackApplicationFactory where deployments that
can share a single runtime supply a non-pooling factory.

As far as ease of deployment is concerned -- a one-liner with a tool called Warbler
generates a .war file based on your Rails app. It can be dropped into an app server.

Here’s JRuby’s home page: http://jruby.codehaus.org/

mod rubinius

The Rubinius team's mod_rubinius is not a Rails-centric solution, but it sounds like
it's going to be a boon to Rails developers none-the-less.

As mod_rubinius lead developer Eero Saynatkari (a.k.a rue) explained it to me,
mod_rubinius is really going to be ...

...Rubinius, itself. The "mod" part will involve little more than building some
lightweight adapters into Rubinius to that it can easily interface with applications and
Web servers.

Rubinius will feature serverization capabilities, including process management,
dispatching and load balancing services. It will be possible to run it in cluster mode,
specifying a number of processes per cluster and a number of VMs per process.

Some of the reasons why using mod_rubinius to deploy applications can reduce
memory requirements because rubinius has advanced copy-on-write semantics, and
the VMs in a cluster can share bytecode.

Future plans for mod_rubinius include support for distributed deployments. Eero
suggested that once an infrastructure is in place for that -- Rubinius should be able
to offer an object space sharable by VMs on physically different locations.

For more information about Rubinius see the Rubinius home page (http://rubini.us/)
and chat logs (http://donttreadonme.co.uk/rubinius-irc/.

pool = (0...POOL SIZE).map {
Rubinius::VM.spawn "rbx mongrel.rb"

}
loop do

server is a regular TCPServer
socket = server.accept
vm = pool.shift

send the file descriptor num to the other wvm
vm << socket.fileno

pool.push vm

end

mod_rubinius development just got started in earnest so | can't show you
mod_rubinius code that can give you a less abstract idea of what VM-based
deployment might look like code-wise. Rubinius committers Tony Arcieri and
MenTalLguY did however provide me with a snippet of code that shows how to run
instances of Mongrel, which could each be running Rails, in multiple VMs. It routes
requests to the VM pool in round robin fashion.

This code starts Mongrel running in multiple VMs, by virtue of passing
rbx_mongrel.rb, a modified version of the Mongrel start-up script to VM.spawn. It
then loops through them, passing a client socket file descriptor to a VM in each
iteration of the loop. The socket file descriptor needs to be passed instead of the IO
object because the multiple VM API can only dispatch primitive types at this time.

pool = (0...POOL SIZE).map {
Rubinius::VM.spawn "rbx mongrel.rb"

I}Loop do det Tun
while true
client = @socket.accept
server o
socket = s fd = Rubinius::VM.get message

B # create a local IO object for this fd
vm = pool. client = IO.for fd(£fd)

thread = Thread.new(client)

send the {|c| process client(c) }
v << sock thread[:started on] = Time.now
pool.push sleep @throttle if @throttle > 0

end graceful shutdown

end
end

Here is an abridged version of the modified Mongrel start-up routine from
rbx_mongrel.rb. You can see where the standard code for accepting the client socket
is commented out, and a VM is receiving the socket file descriptor.

IronRuby

public static void Main() {
const string write = @"C:\Temp\write.rb";
const string read = Q"C:\Temp\read.rb";

code that writes Ruby code to ‘write.rb’

code that writes Ruby code to ‘read.rb’

ScriptRuntime runtimel = ScriptRuntime.Create();
ScriptRuntime runtime2 = ScriptRuntime.Create();

runtimel .ExecuteFile(write);
runtime2.ExecuteFile(read);
runtimel .ExecuteFile(read);

It was only this week that IronRuby ran Rails framework code for the first time, but the
IronRuby team has long had a plan for optimal Rails deployment.

The IronRuby answer for a framework that that’s not thread-safe is that its possible to
run multiple isolated IronRuby instances in the same CLR AppDomain.

Because Rails is not yet running in that configuration, | can’t show you sample code
from an actual Rails installation, but Tomas Matousek of the IronRuby team provided
this sample code that demonstrates the extent to which IronRuby runtimes in the
same AppDomain can be isolated from one another.

IronRuby

public static void Main() {
const string write = @"C:\Temp\write.rb";
const string read = @"C:\Temp\read.rb";

code that writes Ruby code to ‘write.rb’

code that wiFile.WriteAllText (write, @"
Sx = 'Hello from runtime #1!'
= 'some constant'

module Kernel

runtimel.Exec def say bye
runtime?2.Exec puts Tbye '

runtimel . Exec

ScriptRuntime
ScriptRuntime

end
end

First this Ruby code that defines a constant and a “say_bye” method is written to a Ruby file
called write.rb.

IronRuby

public static void Main() {
const string write = @"C:\Temp\write.rb";
const string read = @"C:\Temp\read.rb";

code that writes Ruby code to ‘write.rb’

code that writes Ruby code to ‘read.rb’

File.WriteAllText (read, Q"

ScriptRuntime
puts $x

ScriptRuntime
1f defined? C
runtimel.Exe puts C
runtime?2.Exe else
runtimel.Exe puts 'C not defined'

} end

say bye rescue puts $!
puts
Il);

Next some Ruby code is written to “write.rb”. It will print out the constant if it is
defined. The code here also calls the say_bye method.

IronRuby

public static void Main() {
const string write = @"C:\Temp\write.rb";
const string read = @"C:\Temp\read.rb";

code that writes Ruby code to ‘write.rb’

code that writes Ruby code to ‘read.rb’

ScriptRuntime runtimel = ScriptRuntime.Create();
ScriptRuntime runtime2 = ScriptRuntime.Create();

runtimel .ExecuteFile(write);
runtime2.ExecuteFile(read);
runtimel .ExecuteFile(read);

Next two IronRuby Runtimes are created in the same AppDomain. You can pass an
AppDomain to a Runtime, but if you pass nothing, the current AppDomain is used.

IronRuby

public static void Main() {
const string write = @"C:\Temp\write.rb";
const string read = @"C:\Temp\read.rb";

code that writes Ruby code to ‘write.rb’

code that writes Ruby code to ‘read.rb’

ScriptRuntime runtimel = ScriptRuntime.Create(domain);
ScriptRuntime runtime2 = ScriptRuntime.Create(domain);

runtimel.ExecuteFile(write);
runtime2.ExecuteFile(read);
runtimel.ExecuteFile(read);

Only runtimel executes the code that defines the method and the constant. Then both
runtimes execute the code that tries to read the constant and call the method.

IronRuby

public static VGinthebbais .
S I a R C: \IronRuby\Bin\Debug>rt.exe

const string }eeMl

C not defined
undefined local variable or method
"say bye' for main:Object

code that wi

code that e iello from runtime #1!

AppDomain domgJenl=NKele)si-Ret-1sks
bye

ScriptRuntime ¢
ScriptRuntime runtimeZ = ScriptRuntime.Create(domain);

runtimel.ExecuteFile(write);
runtime2.ExecuteFile(read);
runtimel.ExecuteFile(read);

Here’s the output. You can see that the method and the constant were only defined
for runtimel, even though they are in the same AppDomain.

http://governing.typepad.com/photos/uncategorized/gas_pump.jpg

We just looked at ways the the deployment picture for single-threaded Rails is
improving. At the same time it looks like it may become safe to run Rails in multi-

threaded mode in the not-too-distant future.

This does not mean that the single-threaded options are going to be abandoned, it
just means that developers have more choices.

use mutex: false
-— mutex off

def dispatch action(klass, action, request, status=200)

build controller
controller klass.new(request, status)

if use mutex

@@mutex.synchronize ({
controller. dispatch(action)

}

else
controller. dispatch(action)

end
controller
end

The Merb framework is thread-safe, but supports a “use mutex” option that you can

set

on the command line or in merb.yml to indicate whether or not you want a Mutex

lock around your application-level code.

Rai

s will likely support a similar option. In order to safely run on a threaded server

without a mutex, you’ll need to ensure that you application level code is thread-safe

and

that any libraries or plugins you use are thread-safe.

While there’s no substitute for analyzing code for thread-safety violations, you might
want to look ...

Mongrel Debug-

class Threads < GemPlugin: :Plugin "/handlers"”
include Mongrel: :HttpHandlerPlugin
def process (request, response)
MongrelDbg: : trace (: threads,
"#{Time.now} REQUEST #{request.params['PATH INFO']}")

ObjectSpace.each object do |obj|

if obj.class == Mongrel: :HttpServer
worker list = obj.workers.list
if worker list.length > 0
keys = "—-——-- \n\tKEYS:"
worker list.each {
|t] keys << "\n\t\t-- #{t}: #{t.keys.inspect}" }
end
MongrelDbg: : trace (: threads,
"#{abj.host} :#{cdbj.port}--THREADS: #{worker list.length} #{keys}")
end

...at Mongrel’s built-in debugger, which can be configured to log files that files that
are open between processes you run Mongrel with the -B option it will run this
thread-debugging code which prints out a list of any threads that are still alive
between processing requests.

Workers is a ThreadGroup that is set up in the main Mongrel event loop. Once a
threadgroup is set up, any new threads created during the servicing of a request will
automatically be added to it. Calling list on a threadgroup gives you a list of any
threads that have not terminated.

the { buckblogs :here }

Net::SSH and Thread-safety

[I]n the interest of getting feedback from
people who might actually use the library, |
ask you: which would you prefer? A faster
library in single-threaded programs? Or a
simple program in multi-threaded ones? Is
there a general best-practice in this case?

Jamis Buck

http://weblog.jamisbuck.org/2008/3/18/net-ssh-and-thread-safety

Net::SSH is an example of a library that not thread-safe. If a library is not thread-safe
it doesn’t necessarily mean its author was careless.

While he was working on a new Net::SSH library, Former Rails Core Team member
Jamis Buck wrote a blog post asking whether developers would prefer for him to make
the library thread-safe or not.

The discussion on his blog was interesting. The suggestion was made to add a
configurable mutex.

He decided to go with not making the library thead-safe. Users of the library need to
handle their own synchronization.

| think we're going to be seeing the emergence of more libraries that wrap the
concurrency primitives. We'll be able to count on them to get the synchronization
details right, not unlike the way it's standard practice to rely on JavaScript libraries to
handle the cross-browser particulars and low-level details.

According to Eero, some of the Rubinius enhancements required for cluster mode
support will constitute a concurrency library of sorts. Rubinius will be able to provide
transparent parallelization services for non-server applications.

Just in the last couple of months two small concurrency libraries were introduced....

http://weblog.jamisbuck.org/2008/3/18/net-ssh-and-thread-safety

NAME
forkoff
SYNOPSIS

brain-dead simple parallel processing for ruby

URI

http://rubvforge.orqg/projects/codeforpeople

INSTALL
gem install forkoff

Parallel Each (for ruby with threads)
In the simplest case, you
p l/\ are one letter away from
CO.Ch harnessing the power of

parallelism

http://peach.rubyforge.org/?peach

...forkoff, which claims “brain-dead simple parallel processing for Ruby” and peach,

with a home page that asserts “In the simplest case, you are one letter away from
harnessing the power of parallelism.”

If you use “peach” instead of “each” as your iterator, the logic in the block you pass to

peach will be executed in a separate thread for each item in an Array. You can also
specify a number of threads .

As it’s name suggests, forkoff’s implementation is process-based. The default
number of subprocesses it spawns is two, but its configurable.

NAME

I s=[5,2,3,4].forkoff{|n| 10+n}
SYNOPSIS

brain-dead simple parallel processing for ruby
URI

http://rubvforge.orqg/projects/codeforpeople

INSTALL
gem install forkoff

n the simplest case, you
p l/\ are one letter away from
CO.Ch harnessing the power of

parallelism

http://peach.rubyforge.org/?peach

Here are examples of the basic usage.

class Array
def peach(n = nil, &b)
peachrun(:each, b, n) p
end
def pmap(n = nil, &b) C&_LL\

peachrun(:map, b, n)
end
def pdelete if(n = nil, &b)
peachrun(:delete 1f, b, n)
end

protected
def (meth, b, n = nil)

end

def divvy(n = nil)
n ||= $peach default threads || size

end
end

Peach supports pmap and pdelete_if in addition to peach. It adds these methods to
Ruby’s Array class.

All three methods call peachrun behind the scenes, to spin the threads.

.y

def peachr eth, b, n = nil)
* 4, results, result = [],[1,[]
-ach _with index do |x,il

threads << Thread.new {

results[1] = x.send(meth, &b)}
els
resalts[1] = []

end [11,2,31[3,4,6]1[7,8,9]
end

threads.each {|t| t.join }
results.each {|x| result += x}
result

end

http://peach.rubyforge.org/?peach

The divvy method is what breaks down the array into smaller batches to be processed
in separate threads. So, if you pass a 9-member array to peach, with the “thread
number” set at 3, the data will be processed in 3 concurrent batches.

Forkoff: Producers & Consumers w/SizedQueue

Producers

Consumers

producers = []

n.times do |i]

thread = Thread.new do

each with index do |args, j|

every nth = j.modulo(n) == i

next unless every nth

qgs[j.modulo(n)].push([args, j])
end
qs[1].push(Forkoff.done)

end
producers << thread

end

consumers = []

n.times do |i]

thread = Thread.new do

Eid = fork

end
consumers << thread

end

Forkoff on the other hand does not do its processing in batches. It spawns the
specified number of processes using fork, starts each process off with initial data, and
then feeds data to processes as they become free. Forkoff employs the producer
\consumer abstraction. Although it uses fork to create processes, but it uses threads

t0 manhage the processes.

Forkoff: Producers & Consumers w/SizedQueue

qs = Array.new(n){ SizedQueue.new 1 }

proglucers = |[]

imes do |i]
th¥ead = Thread.new do

ehch with_index do |args, j|
every nth = j.modulo(n) == i
gext unless every nth

gs[j.modulo(n)].push([args, j])

qs[1].push(Forkoff.done)
end

producers << thread

end

gs is a SizedQueue that holds one item. SizedQueue, which can be found in thread.rb
in Ruby’s stdlib, is a thread-safe data structure.

Forkoff begins by getting producer threads going and putting items to be processed
in SizedQueues.

Forkoff: Producers & Consumers w/SizedQueue

consumers = []

n.times do |i|
thread = Thread.new do
loop do

value = gs[1] .pop
break if value == Forkoff.done

args, index = value

r, w = IO.pipe

pid = fork

unless pid
r.close

result = block.call(*args)

w.write(Marshal.dump(result))
exit
end

w.close
result = Marshal.load(r.read)
results[i] .push([result, index])
Process.waitpid pid

end

end
consumers << thread
end

The consumers threads will wait until something is ready for them to process. The
way SizedQueue works, “pop” blocks until there’s something available in the queue.

Forkoff: Producers & Consumers w/SizedQueue

producers []

n.times do |i|

thread = Thread.new do

each with_index do |args, j|
every nth = j.modulo(n) == i
next unless every nth

qs[j.modulo(n)].push([args, j])
end

qs[1].push(Forkoff.done)

end

producers << thread

end

When there’s nothing more to pass to any producer thread, Forkoff.done will be
passed to the queue.

Forkoff: Producers & Consumers w/SizedQueue

consumers = []
n.times do |i|
thread = Thread.new do
loop do
value = gs[i].pop

break 1f value == Forkoff.done

args, index = value
r, w = IO.pipe
pid = fork

unless pid
r.close

result = block.call(*args)

w.write(Marshal.dump(result))
exit
end

w.close
result = Marshal.load(r.read)
results[i].push([result, index])
Process.waitpid pid

end

end
consumers << thread
end

The consumer threads will shut down one by one when they detect the “done”
indicator, as the data supply dwindles.

Forkoff and peach are great as far as they go, but to really take advantage of multi-
core technology -- features like figuring out how many cores are available on the
library level, and even load balancing between cores, are important.

Intel's Threading Building Blocks (http://www.threadingbuildingblocks.org/) is an
example of a library that provides that kind of functionality today. It can make
routing decisions based on the current cache contents. TBB just added a feature that
makes it possible to do things like designate a thread for actions that might block,
like 10, while a computation is in progress.

The Omnibus concurrency library (http://rubyforge.org/projects/concurrent/)
includes functions like peach, in addition to support for a number of different
concurrency models. It's compatible with Ruby 1.8 and JRuby. It was created by
MenTalLguY, who has done a lot of the concurrency design for both JRuby and
Rubinius, and who wrote the fastthread library, which fixes memory leaks and
improves performance for Ruby 1.8.5.

The next version of Omnibus will support some TBB-like features. MenTalLguY
describes some of his plans for Omnibus in this blog entry: http://
moonbase.rydia.net/mental/blog/programming/the-future-of-the-omnibus.

Using Omnibus Library Actors

require 'rubygems'
require 'concurrent/actors'

Actor = Concurrent::Actors::Actor

actor = Actor.spawn do
loop do
Actor.receive | £]
f.when("fanmail"”) {send autographed picture}
f.when("applause"”) { bow }

end
end

actor << "applause"

DHH isn't really setting up a dichotomy between Threads and Processes in the multi-
core blog entry we looked at. He's really asserting that there are alternatives to
threads.

I'd like to show you an example of a concurrency model that's very different from
threads, but I'll show how it can be used for some of the same functions. It's the
Actor model, as it is implemented in Omnibus. Actors are lightweight concurrency
primitives with a built-in message-passing API.

In brief, an Actor receives messages in its mailbox, where they can be filtered. A call
to receive blocks, effectively putting the actor to sleep until there is a message.

Here’s a trivial toy example. The “<<” is used to send a message to an Actor. In this
example the Actor will “bow” upon receiving “applause”. Sending “fanmail,” would
invoke this Actor’s “send_autographed_picture” method. (Thanks to MenTalLguY for
helping me make this into a runnable example).

In the current version of Omnibus, each Actor has its own thread, but in future
versions of Omnibus, there will be a pool of worker threads for handling Actor tasks.

pool = (0...POOL SIZE).map {
Rubinius::VM.spawn "rbx mongrel.rb"

}
loop do

server is a regular TCPServer
socket = server.accept
vm = pool.shift

send the file descriptor num to the other wvm
vm << socket.fileno

pool.push vm

end

What could you use Actors for in real life?

Here's the Rubinius code | showed you before to give you an idea of what spawning
Mongrels in separate VMs would look like. The “<<” is used to send a message to a
VM because the underlying protocol for inter-VM communication is based on Actors.

pool = (0...POOL SIZE).map {
Rubinius::VM.spawn "rbx mongrel.rb"

ioop do def run
while true
client = @socket.accept
server

fd = Rubinius::VM.get message
B # create a local IO object for this fd
vm = pool. client = IO.for fd(fd)

thread = Thread.new(client)
{|c| process client(c) }

socket = s

send the

vm << SocCk thread[:started on] = Time.now
pool.push sleep @throttle if @throttle > 0
end graceful shutdown

end
end

And here’s another look at the the modified Mongrel runner, where a VM receives the
socket file descriptor.

Network programming for a concurrent world

def run

while true
client = @socket.accept
actor = Actor.spawn client,

&method (:process client)

actor[:started on] = Time.now
@workers.add(thread)
sleep @throttle if @throttle > 0

end

graceful shutdown

end

Here's another bit of practical Actor code. It's an abbreivated version of code from the
samples that come with Revactor, Tony Arcieri's Actor library for Ruby 1.9 (http://
revactor.org/). It's a working Mongrel example that uses actors for processing
requests, instead of threads.

Loud Thinking

Me June 06, 2007 11:28

sbout [Vlultli-core Hysteria and the

Gallery

company | Rread Confusion

Girl

| Advances 1n multicore technology

frolects have] caused quite a few folks
Ruby on

rails t0 pontificate that the sky is

Basecamp g : |
... falling for Rails because we're not

sackpack b1g on using threads. It 1sn't.
Campfire

In wFap'pi.ng up, I’d like to go back to David’s blog entry, and its reference to the story
of Chicken Little, who immediately started running around telling everyone the sky is
falling after an acorn fell on his head.

.ﬂi"&hﬁ

~ DEAD FAMOUSH » > THE SKY s
ISAAC & s . FALLING

]\ E W T(“

ANCH* APPLE

wy JOSEPH JACOHS

RoBeErTta MoRALES

_r

http://www.amazon.com/Isaac-Newton-His-Apple-Famous/dp/Osyl0 R (Y 7IE= S ol B RIS O N = -0 oYeYo) M- Te [« A A MK S SV - N ol B

http://www.amazon.com/Sky-Falling-Joseph-Jacobs/dp/00 RSB 0rRNS S il MCT VAL Ol i & o1 A oo Yo 'Y- Ta [« E WA W B NY: K12 T it < BX)

Speaking of parallelism, the famous story of Isaac Newton and the apple is essentially
the same story as the story of Chicken Little, but in a parallel universe.

Wikipedia offers this in one definition of parallel universes: “there are an infinite
number of universes and that everything that could possibly happen in our universe
(but doesn't) does happen in another.”

What if instead of getting hysterical, Chicken Little had come up with the laws of
natural physics? The story of Chicken Little would be quite a different story, then!

These books represent two very different paths. As the chant that Ruby was not
equipped to deliver in a multicore environment grew louder, the Ruby community
could have taken the path of around yelling “The sky is falling”.

Developers are exploring interesting ideas like Erlang-Ruby bridges and Ruby-based
implementations of map-reduce, and the implementors of the different VMs are
working on innovative ways to not only improve Ruby’s concurrency model, but to do
groundbreaking work.

http://www.amazon.com/Sky-Falling-Joseph-Jacobs/dp/0026859092/ref=sr_1_36?ie=UTF8&s=books&qid=1211454389&sr=8-36
http://www.amazon.com/Sky-Falling-Joseph-Jacobs/dp/0026859092/ref=sr_1_36?ie=UTF8&s=books&qid=1211454389&sr=8-36

