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Agenda

• Why Groovy?

• DRY Frameworks

• Grails 10,000 foot view

• Interactive Demo

• Going Further...



Who IS that guy?
• Ken Rimple, Chariot 

Solutions

• I am overrun with 
children and dogs

• 15+ years in IT 
Consulting

• I’ve seen TOO MANY 
frameworks...

• My kid’s Dinosaurs scare 
me...



Why Groovy?

• Dynamically typed language

• Runs natively on the VM as bytecode

• Groovyc compiler compiles both Java and 
Groovy in one pass... 

• Uses a superset of Java syntax and dynamic 
language ‘syntactic sugar’

• Groovy classes can extend Java classes (and 
vice-versa)
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Really Groovy Features

• Groovy is Java without all that messy typing...

• Closures

• Dynamic Typing

• Dynamic Class Redefinition

• Easy DSL

• Groovy-izes Java Classes

• Dirt-simple XML parsing support
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Java Groovy

POJOs require 
Explicit Constructors
Explicit get/setters
.equals and .hashCode

Java is noisy
No closures (yet)
No dynamic typing

POGOs require
Definition of members
That’s it!

Groovy Supports
Dynamic typing (def)
Expanding classes
Closures
Much more...
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Java
public class Voter {
private String ssn;
private String lastName;
private String firstName;

public Voter(String ssn, String firstName,
             String lastname) {
...

}

public void setSsn() { ...}
public String getSsn() { ...}

etc...
}



Groovy



Groovy

class Voter {
String ssn
String lastName
String firstName

}



Java
Voter v = new Voter(“123-45-6789”, “Jack”, 
                    “Beanstalk”);

// what if we want one with just the SSN?
// write a new constructor!

ArrayList list = new ArrayList();
list.add(new Voter(...));
list.add(....);

for (Voter v : lst) {
  ...
}

(lots of ...)
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Groovy
// Groovy provides constructors for free...
def v = new Voter(ssn:”123-45-6789”, firstName, 
lastName:”Beanstalk”)
def v2 = new Voter(ssn:”123-45-6789”)

// arraylists are simple
def voters = [
new Voter(ssn:”234...”),
new Voter(ssn:”235...”)]

voters += new Voter(ssn:”234-333-4444”)

// An example closure...
voters.each {
println(“Voter: ${it.ssn}”)

}



Groovy “Is” Java

• Groovy is Java without all the noise and 
with added flexibility

• Groovy compiles to byte code

• Java classes can extend Groovy classes

• Groovy classes can extend Java classes

• Do not have to create an interpreter to 
use a Groovy class (just add the groovy jar)



Groovy has Elvis!
• With Java:

• int myVal = somevar != null ? somevar : 0;

• The Elvis Operator

• int myVal = somevar :? 0

• ELVIS!!!!

• Groovy is java, saying less...
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What is Grails?
• An agile application framework, 

written in Java and Groovy

• A rich set of plugins

• An easy to understand set of 
components

• Can be deployed to a web server 
as a web application

• Able to execute any major 
java library or service on the 
VM natively



Don’t Repeat Yourself!

• Grails is a DRY platform

• Groovy and Grails aim to remove 
duplication of effort

• Grails favors convention over configuration 
where possible
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Grails: DRYing out Java

• Code backed by industry standard APIs 
(Spring, Hibernate, SiteMesh, ACEGI, etc...)

• However, the configuration handled by 
convention or by simple DSLs 

• Do the same work without all that messy 
typing!!!

• AND, to use any Java library, drop it in ./lib 
and access from Groovy OR Java



Creating a Grails App

• Download Grails from grails.org

• Unzip the files

• Set the GRAILS_HOME path variable

• add $GRAILS_HOME/bin to the path

• type:  grails create-app and follow the 
instructions...
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Key Grails Classes

• Domain Class - A class representing an 
object in your domain (database)

• Controller - A class that operates on URLs 
submitted to the web site

• View - A Groovy Server Page (GSP) 
designed to render the content based on a 
specific request



Domain Class
• Represent data backed by a datastore

• Backed by Hibernate

• Validated by Spring Validation

• Grails will create tables automatically if 
configured in DataSource.groovy

• Grails uses Domain Class information to 
build mappings automatically

• Full Hibernate settings are available if 
needed using mappings



Sample Domain Class
class Party {

    static constraints = {
        name(blank:false)
        description(size:1..5000)
    }

    static hasMany = [candidates: Candidate]

    String name
    String description
 
    String toString() {
        “Party Name: ${name}”
    }

}  



Controller

• Analogous to a Struts Action

• Backed by Spring Controllers

• Each method handled by the Controller is a 
closure



View

• Represents the data that results from a 
Controller action

• Default view name resolution

• /grails-app/views/controllername/closure

• Written as a Groovy Server Page (gsp)

• Dirt-simple tag libraries



Creating Grails Classes
• Grails has creation scripts to build the base 

objects (domains, controllers, views, taglibs, 
tests, services).  Example:

• Will prompt for object names if not 
specified

grails create-domain-class

grails create-controller

grails create-view
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The Scaffold

• Sometimes, you just don’t know 
what you want yet...

• Why define a page before you 
nail down the data model?

• Just use a Grails Scaffold

class VoteController {
   def scaffold = Vote.class
}



Grails Demo

• Topics

• Creating a Grails App

• The Domain Model

• Controllers and Scaffolding

• Generating and modifying views



The Generator
 Script

• Builds code with default behaviors based on other 
classes 

• Similar to rails’ rake task, use the grails generate task 
to build your elements

•grails generate-views domain-class

•grails generate-all domain-class

• Usually used once the domain model is fleshed out a 
bit



Grails Workflow - 
Domain Driven

• Build a domain class for each domain object

• Build a controller for each domain class, but 
scaffold it to the domain class itself

• Model away, making sure the data mappings are 
complete

• Finish by generating or coding all views/
controllers/tests

• This helps focus on the data, not the UI, first!



GORM

• Grails Object Relational Mapping API

• Uses domain classes written in Groovy

• Backed by Hibernate and Spring

• Binds validations to the UI and backend

• Write Hibernate objects without all of 
the messy XML!



GORM Benefits

• Write your domain classes as POGOS

• Define your validation in terms of 
constraints and get validation for free

• Define your relationships using constraints 
and get hibernate mapping for free

• And...



GORM Dynamic 
Finders

• All GORM objects get a findAll() method, 
and ability to generate queries on the fly.  
Just type:

• def result = domObj.findById(234)

• def results = 
domObj.findAllByNameOrderByPrice(“name”)

• You could also use a GORM DSL for the 
query...



GORM DSL
• More direct use of Hibernate Criteria:

• Bring back a list of voters who registered 
within the last 30 days, and are in the Whig 
party, ordered by last name.

def results = 
   Voter.withCriteria { 
      def now = new Date()
      between(‘registrationDate’, now-30, now)
      party {
      eq(name, ‘Whig’)
    }
    order(‘lastName’)

   } 
         



Just scratching the 
surface!

• Only so much to cover in one hour...



So, Why Grails?
• Grails is Java App Development on Steroids

• Grails ORM is the proven Hibernate 
framework, but much easier to stomach

• Grails UI is Spring MVC, including 
WebFlow, but EASY

• Grails makes writing web pages easier

• Grails can use any Java framework by 
dropping it in the lib directory.  Done!



Grails Plugins
Over 56 At Last Count...

Rich UI:  Ajax, GWT, Echo2, YUI, 
OpenLazlo, DWR, Flex, etc..)

Graphing with Google, JreeChart, 
OpenFlash Charting

Testing:  Canoo WebTest, Selenium, 
Coverage

Security with ACEGI, JSecurity, capcha 
plugins, etc...

JMS, RSS/Atom feed generators, Searching 
with Compass/Lucene

Remoting and Web Service plugins

Performance and Caching Plugins (S3, 
ehcache, Static Resources Plugin), 

Scheduling with Quartz

This is an open community:  
www.grails.org/plugins

http://www.grails.org/plugins
http://www.grails.org/plugins


Grails applications in 
Production Today

• Grails is a 1.0.x release, but...

• Numerous insurance, financial institutions 
are using Groovy in applications 

• Grails has been used in production 
applications since version 0.6

• Sky launched showbiz.sky.com on Grails 
this year, 186 million hits / month

• Grails is evolving, but feature rich today



Grails Issues
• Many to Many relationships are not 

scaffolded today

• Have to do two many-to-one 
relationships or customize your GORM 
models

• Grails only handles a single datasource for 
GORM at the moment (but you can use 
Groovy SQL and Hibernate with other 
datasources)

• Migrations support is lacking in core 
product (although plugins exist)



On Deck for Grails 1.1
• From Graeme Rocher’s talk at G2One

• Potential JPA Support 

• Portlet support

• Built-in DB Migrations ala Rails

• Java Content Repository support (map a 
domain class to a JCR)

• Vendor API support (to help with IDE 
tooling)



Books on Groovy and 

• Getting Started with Grails (free e-book, 
Jason Rudolph) -- available at InfoQ

• Groovy Recipes:  Greasing the Wheels of 
Java (Scott Davis)

• Programming Groovy (Venkat 
Subramanium)

• The Definitive Guide to Grails (Grame 
Rocher, but this is out of date)



Great sample app
• Gravl - Glen Smith’s Grails-based Blog

• http://code.google.com/p/gravl/downloads/list

• Excellent example of

• AJAX

• Rich UI (tag clouds, date picker, timeline, more)

• RSS Feed generation

• Searching with the searchable plugin

• Yahoo UI page layout



Resources

• Chariot Resources for ETE, Blogs and 
Podcasts

• http://www.chariotsolutions.com/
java_lab/podcasts

• Me:  krimple@chariotsolutions.com

• http://www.rimple.com/tech and Chariot 
TechCast

http://www.chariotsolutions.com/java_lab/podcasts
http://www.chariotsolutions.com/java_lab/podcasts
http://www.chariotsolutions.com/java_lab/podcasts
http://www.chariotsolutions.com/java_lab/podcasts
mailto:krimple@chariotsolutions.com
mailto:krimple@chariotsolutions.com
http://www.rimple.com/tech
http://www.rimple.com/tech

