
Groovin’ with Grails

How to use your favorite frameworks Rails-style in Java.
Really.

Groovin’ with Grails

How to use your favorite frameworks Rails-style in Java.
Really.

Groovin’ with Grails

How to use your favorite frameworks Rails-style in Java.
Really.

Groovin’ with Grails

How to use your favorite frameworks Rails-style in Java.
Really.

+

Groovin’ with Grails

How to use your favorite frameworks Rails-style in Java.
Really.

+

Groovin’ with Grails

How to use your favorite frameworks Rails-style in Java.
Really.

+ =

Groovin’ with Grails

How to use your favorite frameworks Rails-style in Java.
Really.

+ =

Agenda

• Why Groovy?

• DRY Frameworks

• Grails 10,000 foot view

• Interactive Demo

• Going Further...

Who IS that guy?
• Ken Rimple, Chariot

Solutions

• I am overrun with
children and dogs

• 15+ years in IT
Consulting

• I’ve seen TOO MANY
frameworks...

• My kid’s Dinosaurs scare
me...

Why Groovy?

• Dynamically typed language

• Runs natively on the VM as bytecode

• Groovyc compiler compiles both Java and
Groovy in one pass...

• Uses a superset of Java syntax and dynamic
language ‘syntactic sugar’

• Groovy classes can extend Java classes (and
vice-versa)

Really Groovy Features

Really Groovy Features

• Groovy is Java without all that messy typing...

Really Groovy Features

• Groovy is Java without all that messy typing...

• Closures

Really Groovy Features

• Groovy is Java without all that messy typing...

• Closures

• Dynamic Typing

Really Groovy Features

• Groovy is Java without all that messy typing...

• Closures

• Dynamic Typing

• Dynamic Class Redefinition

Really Groovy Features

• Groovy is Java without all that messy typing...

• Closures

• Dynamic Typing

• Dynamic Class Redefinition

• Easy DSL

Really Groovy Features

• Groovy is Java without all that messy typing...

• Closures

• Dynamic Typing

• Dynamic Class Redefinition

• Easy DSL

• Groovy-izes Java Classes

Really Groovy Features

• Groovy is Java without all that messy typing...

• Closures

• Dynamic Typing

• Dynamic Class Redefinition

• Easy DSL

• Groovy-izes Java Classes

• Dirt-simple XML parsing support

Java -vs- Groovy

Java -vs- Groovy

Java -vs- Groovy
Java Groovy

POJOs require
Explicit Constructors
Explicit get/setters
.equals and .hashCode

Java is noisy
No closures (yet)
No dynamic typing

POGOs require
Definition of members
That’s it!

Groovy Supports
Dynamic typing (def)
Expanding classes
Closures
Much more...

Java -vs- Groovy
Java Groovy

POJOs require
Explicit Constructors
Explicit get/setters
.equals and .hashCode

Java is noisy
No closures (yet)
No dynamic typing

POGOs require
Definition of members
That’s it!

Groovy Supports
Dynamic typing (def)
Expanding classes
Closures
Much more...

Java
public class Voter {
private String ssn;
private String lastName;
private String firstName;

public Voter(String ssn, String firstName,
 String lastname) {
...

}

public void setSsn() { ...}
public String getSsn() { ...}

etc...
}

Groovy

Groovy

class Voter {
String ssn
String lastName
String firstName

}

Java
Voter v = new Voter(“123-45-6789”, “Jack”,
 “Beanstalk”);

// what if we want one with just the SSN?
// write a new constructor!

ArrayList list = new ArrayList();
list.add(new Voter(...));
list.add(....);

for (Voter v : lst) {
 ...
}

(lots of ...)

Groovy

Groovy
// Groovy provides constructors for free...
def v = new Voter(ssn:”123-45-6789”, firstName,
lastName:”Beanstalk”)
def v2 = new Voter(ssn:”123-45-6789”)

Groovy
// Groovy provides constructors for free...
def v = new Voter(ssn:”123-45-6789”, firstName,
lastName:”Beanstalk”)
def v2 = new Voter(ssn:”123-45-6789”)

// arraylists are simple
def voters = [
new Voter(ssn:”234...”),
new Voter(ssn:”235...”)]

voters += new Voter(ssn:”234-333-4444”)

Groovy
// Groovy provides constructors for free...
def v = new Voter(ssn:”123-45-6789”, firstName,
lastName:”Beanstalk”)
def v2 = new Voter(ssn:”123-45-6789”)

// arraylists are simple
def voters = [
new Voter(ssn:”234...”),
new Voter(ssn:”235...”)]

voters += new Voter(ssn:”234-333-4444”)

// An example closure...
voters.each {
println(“Voter: ${it.ssn}”)

}

Groovy “Is” Java

• Groovy is Java without all the noise and
with added flexibility

• Groovy compiles to byte code

• Java classes can extend Groovy classes

• Groovy classes can extend Java classes

• Do not have to create an interpreter to
use a Groovy class (just add the groovy jar)

Groovy has Elvis!
• With Java:

• int myVal = somevar != null ? somevar : 0;

• The Elvis Operator

• int myVal = somevar :? 0

• ELVIS!!!!

• Groovy is java, saying less...

What is Grails?

What is Grails?
• An agile application framework,

written in Java and Groovy

What is Grails?
• An agile application framework,

written in Java and Groovy

• A rich set of plugins

What is Grails?
• An agile application framework,

written in Java and Groovy

• A rich set of plugins

• An easy to understand set of
components

What is Grails?
• An agile application framework,

written in Java and Groovy

• A rich set of plugins

• An easy to understand set of
components

• Can be deployed to a web server
as a web application

What is Grails?
• An agile application framework,

written in Java and Groovy

• A rich set of plugins

• An easy to understand set of
components

• Can be deployed to a web server
as a web application

• Able to execute any major
java library or service on the
VM natively

Don’t Repeat Yourself!

• Grails is a DRY platform

• Groovy and Grails aim to remove
duplication of effort

• Grails favors convention over configuration
where possible

Grails: DRYing out Java

Grails: DRYing out Java

• Code backed by industry standard APIs
(Spring, Hibernate, SiteMesh, ACEGI, etc...)

Grails: DRYing out Java

• Code backed by industry standard APIs
(Spring, Hibernate, SiteMesh, ACEGI, etc...)

• However, the configuration handled by
convention or by simple DSLs

Grails: DRYing out Java

• Code backed by industry standard APIs
(Spring, Hibernate, SiteMesh, ACEGI, etc...)

• However, the configuration handled by
convention or by simple DSLs

• Do the same work without all that messy
typing!!!

Grails: DRYing out Java

• Code backed by industry standard APIs
(Spring, Hibernate, SiteMesh, ACEGI, etc...)

• However, the configuration handled by
convention or by simple DSLs

• Do the same work without all that messy
typing!!!

• AND, to use any Java library, drop it in ./lib
and access from Groovy OR Java

Creating a Grails App

• Download Grails from grails.org

• Unzip the files

• Set the GRAILS_HOME path variable

• add $GRAILS_HOME/bin to the path

• type: grails create-app and follow the
instructions...

Key Grails Classes

Key Grails Classes

• Domain Class - A class representing an
object in your domain (database)

Key Grails Classes

• Domain Class - A class representing an
object in your domain (database)

• Controller - A class that operates on URLs
submitted to the web site

Key Grails Classes

• Domain Class - A class representing an
object in your domain (database)

• Controller - A class that operates on URLs
submitted to the web site

• View - A Groovy Server Page (GSP)
designed to render the content based on a
specific request

Domain Class
• Represent data backed by a datastore

• Backed by Hibernate

• Validated by Spring Validation

• Grails will create tables automatically if
configured in DataSource.groovy

• Grails uses Domain Class information to
build mappings automatically

• Full Hibernate settings are available if
needed using mappings

Sample Domain Class
class Party {

 static constraints = {
 name(blank:false)
 description(size:1..5000)
 }

 static hasMany = [candidates: Candidate]

 String name
 String description

 String toString() {
 “Party Name: ${name}”
 }

}

Controller

• Analogous to a Struts Action

• Backed by Spring Controllers

• Each method handled by the Controller is a
closure

View

• Represents the data that results from a
Controller action

• Default view name resolution

• /grails-app/views/controllername/closure

• Written as a Groovy Server Page (gsp)

• Dirt-simple tag libraries

Creating Grails Classes
• Grails has creation scripts to build the base

objects (domains, controllers, views, taglibs,
tests, services). Example:

• Will prompt for object names if not
specified

grails create-domain-class

grails create-controller

grails create-view

The Scaffold

The Scaffold

• Sometimes, you just don’t know
what you want yet...

The Scaffold

• Sometimes, you just don’t know
what you want yet...

• Why define a page before you
nail down the data model?

The Scaffold

• Sometimes, you just don’t know
what you want yet...

• Why define a page before you
nail down the data model?

• Just use a Grails Scaffold

The Scaffold

• Sometimes, you just don’t know
what you want yet...

• Why define a page before you
nail down the data model?

• Just use a Grails Scaffold

class VoteController {
 def scaffold = Vote.class
}

Grails Demo

• Topics

• Creating a Grails App

• The Domain Model

• Controllers and Scaffolding

• Generating and modifying views

The Generator
 Script

• Builds code with default behaviors based on other
classes

• Similar to rails’ rake task, use the grails generate task
to build your elements

•grails generate-views domain-class

•grails generate-all domain-class

• Usually used once the domain model is fleshed out a
bit

Grails Workflow -
Domain Driven

• Build a domain class for each domain object

• Build a controller for each domain class, but
scaffold it to the domain class itself

• Model away, making sure the data mappings are
complete

• Finish by generating or coding all views/
controllers/tests

• This helps focus on the data, not the UI, first!

GORM

• Grails Object Relational Mapping API

• Uses domain classes written in Groovy

• Backed by Hibernate and Spring

• Binds validations to the UI and backend

• Write Hibernate objects without all of
the messy XML!

GORM Benefits

• Write your domain classes as POGOS

• Define your validation in terms of
constraints and get validation for free

• Define your relationships using constraints
and get hibernate mapping for free

• And...

GORM Dynamic
Finders

• All GORM objects get a findAll() method,
and ability to generate queries on the fly.
Just type:

• def result = domObj.findById(234)

• def results =
domObj.findAllByNameOrderByPrice(“name”)

• You could also use a GORM DSL for the
query...

GORM DSL
• More direct use of Hibernate Criteria:

• Bring back a list of voters who registered
within the last 30 days, and are in the Whig
party, ordered by last name.

def results =
 Voter.withCriteria {
 def now = new Date()
 between(‘registrationDate’, now-30, now)
 party {
 eq(name, ‘Whig’)
 }
 order(‘lastName’)

 }

Just scratching the
surface!

• Only so much to cover in one hour...

So, Why Grails?
• Grails is Java App Development on Steroids

• Grails ORM is the proven Hibernate
framework, but much easier to stomach

• Grails UI is Spring MVC, including
WebFlow, but EASY

• Grails makes writing web pages easier

• Grails can use any Java framework by
dropping it in the lib directory. Done!

Grails Plugins
Over 56 At Last Count...

Rich UI: Ajax, GWT, Echo2, YUI,
OpenLazlo, DWR, Flex, etc..)

Graphing with Google, JreeChart,
OpenFlash Charting

Testing: Canoo WebTest, Selenium,
Coverage

Security with ACEGI, JSecurity, capcha
plugins, etc...

JMS, RSS/Atom feed generators, Searching
with Compass/Lucene

Remoting and Web Service plugins

Performance and Caching Plugins (S3,
ehcache, Static Resources Plugin),

Scheduling with Quartz

This is an open community:
www.grails.org/plugins

http://www.grails.org/plugins
http://www.grails.org/plugins

Grails applications in
Production Today

• Grails is a 1.0.x release, but...

• Numerous insurance, financial institutions
are using Groovy in applications

• Grails has been used in production
applications since version 0.6

• Sky launched showbiz.sky.com on Grails
this year, 186 million hits / month

• Grails is evolving, but feature rich today

Grails Issues
• Many to Many relationships are not

scaffolded today

• Have to do two many-to-one
relationships or customize your GORM
models

• Grails only handles a single datasource for
GORM at the moment (but you can use
Groovy SQL and Hibernate with other
datasources)

• Migrations support is lacking in core
product (although plugins exist)

On Deck for Grails 1.1
• From Graeme Rocher’s talk at G2One

• Potential JPA Support

• Portlet support

• Built-in DB Migrations ala Rails

• Java Content Repository support (map a
domain class to a JCR)

• Vendor API support (to help with IDE
tooling)

Books on Groovy and

• Getting Started with Grails (free e-book,
Jason Rudolph) -- available at InfoQ

• Groovy Recipes: Greasing the Wheels of
Java (Scott Davis)

• Programming Groovy (Venkat
Subramanium)

• The Definitive Guide to Grails (Grame
Rocher, but this is out of date)

Great sample app
• Gravl - Glen Smith’s Grails-based Blog

• http://code.google.com/p/gravl/downloads/list

• Excellent example of

• AJAX

• Rich UI (tag clouds, date picker, timeline, more)

• RSS Feed generation

• Searching with the searchable plugin

• Yahoo UI page layout

Resources

• Chariot Resources for ETE, Blogs and
Podcasts

• http://www.chariotsolutions.com/
java_lab/podcasts

• Me: krimple@chariotsolutions.com

• http://www.rimple.com/tech and Chariot
TechCast

http://www.chariotsolutions.com/java_lab/podcasts
http://www.chariotsolutions.com/java_lab/podcasts
http://www.chariotsolutions.com/java_lab/podcasts
http://www.chariotsolutions.com/java_lab/podcasts
mailto:krimple@chariotsolutions.com
mailto:krimple@chariotsolutions.com
http://www.rimple.com/tech
http://www.rimple.com/tech

