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Loose Coupling

• Challenges:
– Requirements evolve

– Technologies change

– Systems need to be integrated

• Solutions:
– Define generic abstractions

• Interfaces, Channels

– Encapsulate implementation details

• Strategies, Messages

– Take advantage of polymorphism
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Separation of Concerns

• Challenges:

– Infrastructural resources must be located and configured

– Duplicated logic is scattered across components

– Many responsibilities are tangled within a component

– Testing becomes prohibitive

• Solutions:

– Dependency Injection

• Provide resources to the components

• Isolate components from the environment

– Aspect Oriented Programming

• Modularize cross-cutting concerns

• Minimize scattering and tangling

– Delegate to templates for generic behavior
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Layered Architecture
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Pipes and Filters Architecture

• Pipes (messaging channels) decouple components

• Facilitates interception and monitoring

• Filter may be a service, transformer, or router

• Enables flexible service orchestration

• Channel adapters connect in/out-bound transports
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Event-Driven Systems

• Essentially Inversion of Control at runtime

• Framework polls or listens to an event source

• Framework notifies or invokes a service

• Example events

– File written to a directory

– JMS Message arrives on a queue/topic

– Email received

– Scheduled trigger fires

– Method invocation or return value is intercepted (AOP)
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Staged Event Driven Architecture

(SEDA)

• Alternative to thread-per-request server model

• Controlled number of threads per handler

• Ideal for short-lived tasks and high # of requests
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Goal 1:
Keep it Simple and Non-Invasive

• Business components should not be aware of the 
messaging system or integration concerns

• Thread management and polling should be 
encapsulated but highly-configurable

• Integration logic (e.g. routing and transformation) 
should be isolated and testable

– Annotated type-safe methods on POJOs

– Dynamic language support

• Custom extension points should be well-defined

– Strategy interfaces

– Interceptors and AOP advice
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Goal 2:
Maintain Philosophical Consistency

• Event-driven = runtime Inversion of Control

– Framework handles message-listening

– Framework handles service-invoking

• Core API design based on interfaces

• Highly customizable via strategy and template 
method patterns

• Provide a framework for testing

• Support multiple metadata formats

– XML with ‘beans’

– XSD-based namespace support

– Annotations
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Goal 3:
Provide Seamless Integration

• Maximize leverage from the Spring foundation

– Lifecycle management

– Task execution abstraction

– Aspect-Oriented Programming

– Declarative transaction management

– Dynamic language support

– Spring remoting

– JMS support

– Scheduling
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The Result

• Simplifies development of integration solutions by 
relying on proven Spring best practices and well-
known Enterprise Integration Patterns

• Facilitates incremental adoption for existing Spring 
users who are beginning to explore SOA and EDA

• Co-evolves with other Spring portfolio products
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Message Channel

• Decouples producers from consumers

• Enforces data type consistency

• Provides a subscription strategy

– Point-to-Point Channel

– Publish/Subscribe Channel

• Enables message-based error handling

– Invalid Message Channel

– Dead Message Channel

MessageProducer
Consumer

Message
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Message

• A generic package for data (the Message 

payload) that can be transported via channels

• A Message Header provides information to other 

components that consume from channels

– Message ID

– Sequence Number

– Sequence Size

– Expiration Date

– Correlation Identifier

– Return Address

Message

Header

Payload
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Message Endpoint

• Provides an abstraction for message producers 
and consumers
– Adapts input sources and output targets

– Handles invocation of local services

• Cleanly separates messaging concerns from 
business components
– Acts as a Messaging Gateway for the application

– Uses a Messaging Mapper to convert between 
Messages and domain objects

• Supports multiple consumer strategies
– Polling or Event-driven

– Selective Consumers

– Competing Consumers
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Channel Adapter

• Connect a source to the messaging system 

so it can send to a Message Channel

• Connect a target to the messaging system 

so it can receive from a Message Channel

TargetChannel
Adapter

Message ?

Source Channel
Adapter

Message?
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Service Activator

• A Message Endpoint that invokes a service

• Supports multiple communication styles

– one-way and request-reply

– synchronous and asynchronous

• The service is unaware of the messaging system

ServiceService
Activator

Request

Reply
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Message Router

• Route messages to message channels

• Isolate routing strategy from business logic

• Provide a dynamic alternative to 

publish/subscribe channels

• Accommodate complex messaging scenarios

– Splitter

– Aggregator

– Resequencer
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Content Based Router

• Determine target channel based on

– payload type

– property value

– custom logic applied to payload

• May define rules with EL or a scripting language

• May use XPath with an XML payload
VIP

Service

Standard
Service

ClientTier
ChannelResolver

Message ContentBasedRouter
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Splitter and Aggregator

• Divide coarse-grained message into sub-messages

• Delegate to distributed endpoints as necessary

• Recombine asynchronous reply messages

Request

Splitter Aggregator

Reply



Copyright 2008 SpringSource.  Copying, publishing or distributing without express written permission is prohibited. 22

Message Translator

• Convert payload type

• Enrich message content

• Filter message content

• Normalize message format

– Multiple clients may send multiple versions

– The application may expect a canonical format

Message Message Translator Message’
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Content Enricher

• Invoke a service that provides additional data 

to the payload object

• Add properties for a downstream adapter

Message Content Enricher Message

CustomerService

•Account ID •Account ID
•Account Type
•Customer Name
•Customer Email
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Content Filter

• Remove unnecessary information to reduce size

• Remove sensitive information for security purposes

• Use a Claim Check to save data for later

Message Content Filter Message

•Account ID
•Balance
•Customer SSN
•Customer Email

•Customer Email

Security
Configuration
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EIP and the Core Principles

• A Message encapsulates data

• A Message Channel decouples producers and 
consumers

• A Message Endpoint is an abstraction whose 
implementation may translate, route, or invoke 
a business service with a Message payload

• A Channel Adapter encapsulates the connection 
details and decouples the integrated systems

• Asynchronous invocation separates the polling 
or listening concerns from the business logic

• A message-driven architecture accommodates 
change and evolving business requirements
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MessageChannel

public interface MessageChannel {
boolean send(Message message);
boolean send(Message message, long timeout);
Message receive();
Message receive(long timeout);

}

• If capacity is reached, the send method will block 

until a Message is removed or the timeout elapses

• If empty, the receive method will block until a 

Message is available or the timeout elapses
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SimpleChannel

MessageChannel channel = new SimpleChannel(50);
channel.send(new StringMessage(“foo”), 100);
Message message = channel.receive(300);

timeout in milliseconds

capacity

• Default implementation

• Wraps a BlockingQueue
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MessageHandler

• A generic interface defines the simple but common 
behavior of processing a received Message

• Many of the internal base messaging components 
implement this top-level interface

– Routers, Transformers, Service Invokers

• Implementations do not necessarily return a reply 
Message (routers, void-returning service invokers)

public interface MessageHandler {
Message handle(Message message);

}
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MessageHandlerChain

• MessageHandlers can be linked together

Handler2 Handler3Handler1

MessageHandlerChain chain = new MessageHandlerChain();
chain.add(new Handler1());
chain.add(new Handler2());
chain.add(new Handler3());
Message result = chain.handle(new StringMessage(“foo”)); 
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InterceptingMessageHandler

• An InterceptingMessageHandler can add behavior 
before and/or after another handler

– The intercepting handler is responsible for calling handle
on the next handler (or intentionally not proceeding)

Handler2 Handler4Handler1

public Message handle(Message message, MessageHandler target) {
// do something before
message = target.handle(message);
// do something after
return message;

} Similar to AOP around advice

Handler3
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MessageDispatcher

• Receives from a channel and sends to one or more handlers

• Configurable properties of the dispatcher: 

– defaultSchedule (initialDelay, period, fixedRate)

– receiveTimeout

– maxMessagesPerTask

– rejectionLimit

– retryInterval

MessageDispatcher dispatcher = 
new DefaultMessageDispatcher(channel);

dispatcher.addHandler(new ExampleMessageHandler());
dispatcher.addHandler(new AnotherMessageHandler(), schedule);
dispatcher.start();
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MessageBus

• Acts as a registry for

– MessageChannels

– MessageEndpoints (handler + policies)

• Provides task execution infrastructure

– For scheduling MessageDispatchers

– For MessageEndpoint thread pools

• Manages lifecycle of the registered 
components (implements Lifecycle itself)
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Configuration Options

• Integration components may be 

configured in a number of ways

– Java with direct usage of the API

– XML with generic 'beans' elements

– XML with XSD namespace support

– Annotations

– AOP
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Java Configuration

MessageHandler handler = new ExampleHandler();

DefaultMessageEndpoint endpoint = new DefaultMessageEndpoint();
endpoint.setSubscription(new Subscription("inputChannel"));
endpoint.setDefaultOutputChannelName("outputChannel");
endpoint.setHandler(handler);

MessageBus bus = new MessageBus();
bus.registerChannel("inputChannel", new SimpleChannel());
bus.registerEndpoint("testEndpoint", endpoint);
bus.registerChannel(“outputChannel", new SimpleChannel());
bus.start();
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XML Configuration

<bean id ="inputChannel"
class ="org.springframework.integration.channel.SimpleChan nel" />

<bean id ="endpoint"
class ="org.springframework.integration.endpoint.

DefaultMessageEndpoint" >
<property name=“subscription" >

<bean class ="org.springframework.integration.
scheduling.Subscription”

<constructor-arg ref ="inputChannel” />
</bean>

<property name="defaultOutputChannelName"
value ="outputChannel" />

<property name="handler" ref ="exampleHandler" />
</ bean >

<bean id ="bus"
class ="org.springframework.integration.bus.MessageBus" />
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Schema-Based Configuration

<integration:message -bus />

<integration: channel id ="quotes" />

<integration: endpoint input-channel ="quotes"
handler-ref ="logger"
handler-method ="log" >

<integration: schedule period ="1000" />
<integration:concurrency core =“5” max=“20” />

</integration: endpoint >
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Annotation Configuration

@MessageEndpoint (input= “inputChannel” ,
defaultOutput= “outputChannel” )

public class SimpleAnnotatedEndpoint {

@Handler
public String sayHello(String name) {

return "hello " + name;
}

}
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Messaging and AOP

• Spring AOP provides a non-invasive way to 
capture method execution “events”

– Before advice

– After-Returning advice

– After-Throwing advice

• Spring Integration includes two interceptors

– MessagePublishingInterceptor

– AnnotationAwareMessagePublishingInterceptor
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MessagePublishingInterceptor

• The interceptor can be customized or extended
– Provide a MessageMapper strategy

– Subclass and implement a channel resolving strategy

MessagePublishingInterceptor interceptor =
new MessagePublishingInterceptor();

interceptor.setDefaultChannel(testChannel);
ProxyFactory pf = new ProxyFactory(testService);
pf.addAdvice(interceptor);
TestService proxiedService = (TestService) pf.getProxy();
String result = proxiedService.test();

The return value is also sent to the channel

resolveChannel(MethodInvocation invocation)
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Annotation-Driven Publisher

• Add the @Publisher annotation to any 
method of a Spring-managed object

• Register a bean post-processor

@Publisher(channel=“testChannel”)
public String test() {

return “testing…”;
}

<bean class=“org.springframework.integration.config.
PublisherAnnotationPostProcessor”/>
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Annotation-Driven Subscriber

• Add the @Subscriber annotation to any 
method of a Spring-managed object

• Register a bean post-processor

@Subscriber(channel=“testChannel”)
public void test(String input) {

System.out.println(“received: ” + input);
}

<bean class=“org.springframework.integration.config.
SubscriberAnnotationPostProcessor”/>
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Channel Adapters

• A source adapter connects an external 
data provider to a MessageChannel

• A target adapter connects an external 
data consumer to a MessageChannel

• Examples:

– JMS, File, Stream, RMI, ApplicationEvent

Similar to Spring’s JMS MessageConverter

• In both cases, a message mapping strategy 
handles the conversion to and from message types
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JMS Channel Adapters

<si:message-bus/>

<si:channel id=“inputChannel”/>

<si:channel id=“outputChannel”/>

<si:jms-source id=“jmsSourceAdapter”

connection-factory=“connectionFactory”

destination-name=“sourceQueue”

channel=“inputChannel”/>

<si:jms-target id=“jmsTargetAdapter”

connection-factory=“connectionFactory”

destination-name=“targetQueue”

channel=“outputChannel”/>
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File Channel Adapters

<si:message-bus/>

<si:channel id=“inputChannel”/>

<si:channel id=“outputChannel”/>

<si:file-source id=“fileSourceAdapter”

directory=“${java.io.tmpdir}/test-input”

channel=“inputChannel”

poll-period=“10000”/>

<si:file-target id=“fileTargetAdapter”

directory=“${java.io.tmpdir}/test-output”

channel=“outputChannel”/>
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Stream Channel Adapters

CharacterStreamSourceAdapter inputAdapter =

new CharacterStreamSourceAdapter(reader);

adapter.setChannel(inputChannel);

CharacterStreamTargetAdapter outputAdapter =

new CharacterStreamTargetAdapter(writer);

messageBus.registerSourceAdapter(“inputAdapter”, inputAdapter);

messageBus.registerHandler(“outputAdapter”, outputAdapter,

new Subscription(outputChannel));

Also: ByteStreamSourceAdapter and ByteStreamTargetAdapter
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ApplicationEvent Adapters

ApplicationEventSourceAdapter adapter = 
new ApplicationEventSourceAdapter();

eventTypes = new ArrayList<Class<? extends ApplicationEvent>>();
eventTypes.add(TestApplicationEvent2.class );
adapter.setEventTypes(eventTypes);
adapter.setChannel(channel);

adapter.onApplicationEvent(new TestApplicationEvent1());
adapter.onApplicationEvent(new TestApplicationEvent2());
message = channel.receive(); // will receive TestApplicationEvent2

ApplicationEventTargetAdapter sends message payloads as 
ApplicationEvents – it implements ApplicationEventPublisherAware
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Delegating Source Adapters

MethodInvokingSource source = new MethodInvokingSource();
source.setObject(new ExampleSource());
source.setMethod("retrieve");

PollingSourceAdapter adapter = new PollingSourceAdapter(source);
adapter.setChannel(channel);
adapter.setPeriod(100);
adapter.start();

Message message = channel.receive();

• SourceAdapters are registered with the 
MessageBus which handles scheduling and lifecycle
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Delegating Target Adapters

MethodInvokingTarget target = new MethodInvokingTarget();
target.setObject(new ExampleTarget());
target.setMethod(“publish”);

DefaultTargetAdapter adapter = new DefaultTargetAdapter(target);
bus.registerHandler(“adapter”, adapter, new Subscription(channel));

channel.send(new StringMessage(“foo”));

• TargetAdapters are also registered with the 
MessageBus

- Handles lifecycle and schedules a dispatcher
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Annotation-Based

Channel Adapters

@MessageEndpoint
public class SampleAnnotatedEndpoint {

@Polled(period=5000)
public String getName() {

return "World";
}
@Handler
public String sayHello(String name) {

return "Hello " + name;
}

@DefaultOutput
public void display(String message) {

System.out.println(message);
}

}
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Message Routing

• Routing can be simple

– Resolve and send to a single channel based 
on the Message’s payload type

– Resolve and send to multiple channels based 
on a property value in the MessageHeader

• Or complex

– Split a composite Message into its 
constituent parts and then send each as a 
new Message to a dedicated handler

– In a downstream endpoint, aggregate the 
results into a single composite Message
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Message Routing Interfaces

• The base router implements MessageHandler 
and delegates to these fine-grained strategies

public interface ChannelResolver {
MessageChannel resolve(Message message);

}

public interface MultiChannelResolver {
List<MessageChannel> resolve(Message message);

}

public interface ChannelNameResolver {
String resolve(Message message);

}

public interface MultiChannelNameResolver {
String[] resolve(Message message);

}
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PayloadTypeRouter

channelMappings.put(String.class, stringChannel);
channelMappings.put(Integer.class, integerChannel);

PayloadTypeRouter router = new PayloadTypeRouter();
router.setChannelMappings(channelMappings);
Message<String> message1 = new StringMessage(“test”);
Message<Integer> message2 = new GenericMessage<Integer>(123);

router.handle(message1); // will send to ‘stringChannel’
router.handle(message2); // will send to ‘integerChannel’
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RecipientListRouter

List<MessageChannel> channels = new ArrayList<MessageChannel>();
channels.add(channel1);
channels.add(channel2);

RecipientListRouter router = new RecipientListRouter();
router.setChannels(channels);
Message<String> message = new StringMessage(“test”);

router.handle(message); // will send to channel1 and channel2
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Routing Annotation Examples

• Routers can also be defined with annotations

– Low-level (working with message and channel)

– High-level (working with domain objects)

@Router
public List<MessageChannel> getChannels(Message message) {

// resolve the channel or channels…
}

@Splitter
public OrderItem[] splitOrders(PurchaseOrder purchaseOrder) {

// split the purchase order into order items…
}
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1.0 Roadmap (1)

• Configuration

– Generic XML ‘beans’

– XSD-based namespaces

– Annotations

• Channels

– Point-to-Point

– Publish/Subscribe

– Support for datatype enforcement and priority

– Interceptors for send and receive

• Adapters

– JMS, RMI, HttpInvoker, Hessian/Burlap, and Spring-WS 

– File, FTP, Stream, and Email
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1.0 Roadmap (2)

• Spring Core Integration
– AOP

• intercept and publish a Message before or after method

• subscribe to a MessageChannel for method input

– Adapters for Spring ApplicationEvents

– Transaction management for Message Endpoints

• Spring Portfolio Integration
– Source/Target Adapters for Spring Web Services

– Messaging Gateway for Spring MVC

– Integration with Spring Batch processes

– Spring Security for Channels and Endpoints
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Suggested Reading

• Enterprise Integration Patterns
– Gregor Hohpe and Bobby Woolf

(Addison Wesley, 2004)

• Pattern-Oriented Software Architecture, v.4
– Frank Buschmann, Kevlin Henney,

and Douglas C. Schmidt (Wiley, 2007)

• Event-Based Programming
– Ted Faison (Apress, 2006)

• Java Messaging
– Eric Bruno (Charles River Media, 2006)

• Enterprise Service Bus
– David Chappell (O’Reilly, 2004)
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