
Spring in
 the ESB:
A Foundation
for SOA

Aaron Mulder
CTO
Chariot Solutions

2 Spring in the ESB

Speaker

• Aaron Mulder
• Mule contributor
• ServiceMix committer
• CTO of Chariot Solutions

– Java/Open Source consulting firm
– Have used Mule and ServiceMix with Spring on

consulting engagements

3 Spring in the ESB

Agenda

• Part 1: Overview
– Why Spring?
– Why ESB?

• Part 2: Using Spring components in:
– ServiceMix
– Mule

• Part 3: More on Spring in the ESB

Overview

5 Spring in the ESB

Why Spring?

• If you don't know by now...

 ...you should ask for your money back

6 Spring in the ESB

Background on ESB

• A bus architecture with messages,
components listening for messages, and
routing of messages between components

• Separation of component logic from
network transports in/out of the bus

• Optional orchestration for advanced
workflow, business process, etc.

• Consistent platform for integration

7 Spring in the ESB

ESB Concepts

• A component handles incoming and/or
outgoing messages
– Product-specific components
– Spring components

• An endpoint handles connectivity to the bus
– JMS
– HTTP (REST or SOAP, etc.)

• Components on the bus may handle logic,
routing, legacy connectivity, etc.

8 Spring in the ESB

ESB for Integration

• Before ESB:
– Spaghetti integration “architecture”
– Many systems, many data sources, many

applications, many technologies, many paths

• After ESB:
– Single point of contact for integration
– Standardized messages, routing, etc.
– Fewer pathways, more consistent, easier to

manage and scale, etc.

9 Spring in the ESB

Open Source ESB Options

• Mule (mule.codehaus.org)
– Mature, but still actively developed
– POJO-based messages
– Can directly load an external Spring config file

• ServiceMix (servicemix.org)
– Coming up on 1 year old
– JBI-based messages (JSR-208)
– More robust container model
– Spring via XBean and JSR-181

10 Spring in the ESB

Java Business Integration (JBI)

• A JCP standard for integration & ESBs
• Not yet fully supported by all vendors,

though several on board
• Supports containers, components, XML-

based messages, endpoints, etc.
• Includes deployment model with hot deploy
• Should make it easier to share components

across ESB products...

Spring Runtime
Options

12 Spring in the ESB

Spring can be run...

• Standalone (with a simple main method)
• In a minimal runtime (like XBean)
• In a Java EE application / app server
• In an ESB runtime

 But which is best?

13 Spring in the ESB

Spring Standalone

• You have full control in the Spring config(s)
• A lot to configure for an enterprise

application (database, transactions,
management, messaging, ...)

• You're responsible for any runtime
configuration, management, monitoring...

• No deployment model
• Easy to test

14 Spring in the ESB

Spring in XBean

• Adds modules/plugins, component
lifecycle, management, etc.

• XBean configuration files accept Spring
syntax for instant integration

• Easy integration with XBean-based
products like ActiveMQ, ServiceMix, ...

• Still no configuration GUI, limited canned
components... a lightweight framework

15 Spring in the ESB

Spring in Java EE Applications

• No more manual configuration of database,
transactions, messaging, other resources

• Java EE focused more on business logic
and presentation

• RPC-heavy networking
• Painful integration, web services – code

tied to network transports
• Hard to be real testable

16 Spring in the ESB

Spring in the ESB

• ESB focused on routing and integration
– Standardizing messages and communication
– Code separate from transports

• Orchestration options
• Deployment and management
• No particular persistence, resource

handling, or presentation options
• Test in or out of the ESB

17 Spring in the ESB

Spring, App Server, & ESB?

• Spring has the simple, configurable POJOs
• An application server can handle resource

configuration, management,
deployment,and presentation

• The ESB can handle orchestration,
integration, standardized messaging

• Powerful combination, if a bit heavy
• No integrated application package... yet

Spring in Mule

19 Spring in the ESB

Introduction to Mule

• Driven by an XML configuration file
– Includes network connectors, message

transformers, management agents
– Includes a model defining service components

with endpoints and routing

• The Mule config file can import a separate
Spring config file
– Then the Mule config can directly interact with

Spring beans

20 Spring in the ESB

The Mule Config File

<mule-configuration id="prototype" version="1.0">
 <container-context ...>
 <security-manager ...>
 <agents ...>
 <connector ...>
 <transformers ...>
 <model name="PrototypeModel">
 <mule-descriptor name=”MyService”
 implementation=”test.MyClass”>
 <inbound-router ...>
 <outbound-router ...>
 </mule-descriptor>
 </model>
</mule-configuration>

21 Spring in the ESB

Routing by POJO type
<mule-configuration id="prototype" version="1.0">
 <model name="PrototypeModel">
 <mule-descriptor name=”MyService”
 implementation=”test.MyClass”>
 <outbound-router>
 <router
 className="org.mule.routing.outbound.FilteringOutboundRouter">
 <endpoint address="vm://ServiceOne"/>
 <filter expectedType="com.example.SrvOneRequest"
 className="org.mule.routing.filters.PayloadTypeFilter"/>
 </router>
 <router
 className="org.mule.routing.outbound.FilteringOutboundRouter">
 <endpoint address="vm://SNMP"/>
 <filter expectedType="com.example.MuleSNMPMessage"
 className="org.mule.routing.filters.PayloadTypeFilter"/>
 </router>
 </outbound-router>

22 Spring in the ESB

Spring in Mule

<mule-configuration id="prototype" version="1.0">
 <container-context name=”Spring”
className="org.mule.extras.spring.SpringContainerContext">
 <properties>
 <property name="configFile"
 value="spring-config.xml"/>
 </properties>
 </container-context>
 <security-manager ...>
 <agents ...>
 <connector ...>
 <transformers ...>
 <model name="PrototypeModel">
 <mule-descriptor name=”MyService”
 implementation=”MySpringBean”>
...

23 Spring in the ESB

Advantages & Disadvantages

• Currently can only reference one Spring
config file

• No runtime deployment – components all
fixed in Mule config file

• Messaging and routing based on POJOs
– If return type is Foo, looks for another service

with a method with a single argument of type
Foo to call as the next in the chain

• Extensive Acegi security support

24 Spring in the ESB

 More Spring & Mule

• Can use a combined syntax to configure
beans/properties in a Spring-like way
directly in the Mule config file
– But, some of the names change to distinguish

between Spring “property” and Mule “property”

• Can actually configure Mule itself inside a
Spring config file, using beans for all the
Mule components
– More verbose, but more flexible Spring options

25 Spring in the ESB

Is Spring Needed?

• Mule services are POJO-like by default
• But Mule configuration is not as robust as

Spring configuration
• Integrating Spring helps for complex

components with interdependencies
• Can also take advantage of loads of

canned Spring components
– Database pools & persistence libraries,

AOP/interceptors, security, etc.

Spring in ServiceMix

27 Spring in the ESB

Introduction to ServiceMix

• A JBI server based on XBean
• May be configured statically (monolithic

config file) or dynamically (static core plus
hot deployed services, etc.)

• Main config file and module config files use
XBean/Spring syntax (very similar to Spring
2 custom schemas)

• Some constraints due to JBI

28 Spring in the ESB

A bit of JBI

• JBI defines:
– JBI Components (really, service containers)
– Service Units (a group of services, deployed to

JBI Component / service container)
– Service Assemblies (deployable group of

service units)
– Normalized Messages (a message with

headers, an XML body, and attachments)

29 Spring in the ESB

JBI Advantages / Disadvantages

• A component that wants to send or receive
messages must deal with JBI artifacts
(normalized messages, etc.)

• Solid component model, with lifecycle,
deployment, etc.

• Still, the JBI components are not real
POJO-like, and the spec doesn't deal much
with application-level issues

30 Spring in the ESB

Spring in ServiceMix

• Bottom line, you need a JBI Component (a
service container) that you can deploy
Spring or POJO components to

• ServiceMix has multiple Spring options:
– Can use Spring syntax inside most ServiceMix

config files, e.g. the main static config file
– Can use the Lightweight Container & “POJOs”
– Can use the JSR-181 Container to connect

Spring POJOs to the bus

31 Spring in the ESB

The Lightweight Container

• Supports many service types (files, JMS, e-
mail, rules, scheduler, ...)

• Supports “POJOs”, so long as they
implement various JBI interfaces and use
JBI methods to send and receive
NormalizedMessages

• Spring syntax used to configure each
“POJO”

32 Spring in the ESB

Lightest-Weight Component

public class PojoSender {
 private ServiceMixClient client;

 public void sendMessage() throws MessagingException {
 InOnly exchange = client.createInOnlyExchange();
 NormalizedMessage message = exchange.getInMessage();
 message.setProperty("id", new Integer(i));
 message.setContent(new StringSource(“some XML”));
 client.send(exchange);
 }

 public void setClient(ServiceMixClient client) {
 this.client = client;
 }
}

33 Spring in the ESB

Lightweight Config File

<beans xmlns:sm="http://org.apache.servicemix/config/1.0">
 <sm:serviceunit id="jbi">
 <sm:activationSpecs>
 <sm:activationSpec componentName="receiver"
 service="foo:receiver">
 <sm:component>
 <bean class="com.example.Receiver"/>
 </sm:component>
 </sm:activationSpec>
 ...
 </sm:activationSpecs>
 </sm:serviceunit>

 <bean id=”sender” class=”com.example.PojoSender”>
 <property name=”client” ref=”...” />
 </bean>
</beans>

34 Spring in the ESB

The JSR-181 Container

• Exposes any POJO to the JBI bus using
JSR-181 to generate WSDL for the POJO

• NormalizedMessages whose XML
complies with the WSDL will be decoded to
calls against the POJO (with argument
objects, return objects, etc.)

• POJOs can be pure POJOs, defined in a
Spring config file

35 Spring in the ESB

JSR-181 Component

public class SpringPojo {
 public SomeObject doSomething(String foo,
 OtherObject bar) {
 ...
 return ...;
 }
}

36 Spring in the ESB

JSR-181 Config File

<beans
 xmlns:jsr181="http://servicemix.apache.org/jsr181/1.0">

 <jsr181:endpoint pojo="#myPojo" />

 <bean id=”myPojo” class=”com.example.SpringPojo”>
 ...
 </bean>
</beans>

37 Spring in the ESB

Spring in ServiceMix Conclusions

• The lightweight container is best if you're
using some of the featured types other than
POJOs (file monitoring, scheduling, etc.)
– Or if you want to do detailed orchestration with

JBI interactions

• The JSR-181 container is best for a pure
Spring approach

• Either one can be statically configured or
hot deployed

38 Spring in the ESB

Is Spring Needed?

• Some kind of component model must be
used...

• JBI-style components are not real clean,
not so easy to test

• Perhaps best to build Spring components
and then either expose via JSR-181 or
adapters to fit into the Lightweight
Container

More on Spring
in the ESB

40 Spring in the ESB

Spring in ESB vs. Spring alone

• In Spring standalone
– You must configure in/out messaging (JMS,

Web Services, network bindings, etc.)
– You must decode messages to calls on Spring

object, and encode responses to messages
– You must define data / error formats
– You must run Web/JMS server

• In the ESB
– All this is configurable and taken care of for you

41 Spring in the ESB

But do I care?

• Most of that isn't a big deal for a traditional
web application

• It's best for:
– Messaging-oriented systems
– An integration platform connecting many

disparate systems
– A service-oriented architecture connecting

many services with routing, orchestration, etc.

42 Spring in the ESB

Spring / ESB / Java EE

• The ESB doesn't provide a typical web
application container

• Not as elaborate a component model as
EJBs

• The ESB can be run either inside or in
conjunction with a Java EE application
server to get the best of both worlds
– Open source ESB/app server integration is still

evolving (exposing EJBs as endpoints, etc.)

43 Spring in the ESB

Advanced Services

• What if a service needs to be initialized,
managed, or orchestrated?

• Some of this can be done in Spring
• All of this can be done by a component in

the ESB
• Normally there are product-specific

interfaces a component can implement
– Initialisable (Mule), InitializingBean (Spring),

ComponentLifeCycle (JBI)

44 Spring in the ESB

Advanced Services, cont.

• Nicest to keep logic in Spring components
where possible
– May need product-specific adapter layer
– Easier to test, easier to make portable

• Not necessarily feasible for orchestration
– For detailed interaction with messaging and

routing, will need to be product-specific
– JBI has the “standards-based” advantage
– Still can use Spring persistence
– Or just integrate a BPEL engine

45 Spring in the ESB

Build Environment

• Message-oriented or service-oriented
builds tend to be challenging

• Tools like Maven make it easier to use
binaries of every service except the one
you're working on

• Spring, Mule, and ServiceMix can all be run
with JUnit to run tests as part of a build
– But often relies on static configuration instead

of runtime deployment

46 Spring in the ESB

Testing

• Unit testing handled by JUnit
– With or without the ESB
– Maven can coordinate running tests

• Continuous Integration can be handled by
Continuum
– Some minor tweaking needed to run multi-

module builds on a test server

• Load testing can be done with JMeter
– Capture and re-emit messages

47 Spring in the ESB

Security

• ESB Security typically applied at endpoints
(normally for incoming messages)

• May also be able to apply security on
component invocation

• Often, a message originates from another
component (original user identity lost)

• Can use JAAS for authentication and
perhaps Acegi
– At Spring component or endpoint level

48 Spring in the ESB

Deployment

• Normally Spring is only started/stopped
once
– ESBs with static configuration work like this

• Can run the ESB standalone
• Can deploy Spring and the ESB as part of

a web application for app-level hot/redeploy
• ServiceMix can be integrated with app

servers to leverage the server's
deployment tools for JBI hot/redeploy

49 Spring in the ESB

Deployment, cont.

• Static config in application module best for
apps with async/messaging requirements
– Or to get redeploy for Mule

• ServiceMix app server integration with hot
deploy best when ESB services may use
application logic and vice versa
– Or to use app server config, management, etc.

• Standalone deployment best for ESB as
standalone middleware accessed by many
applications

50 Spring in the ESB

Spring-Only Deployment

• Both Mule and ServiceMix can be
configured and run solely via a Spring bean
context
– Mule/ServiceMix implementation objects

declared and configured as Spring beans

• Makes for a pretty unpleasant Spring config
file...

• But the ESB can be run and managed
anywhere that Spring can be run

51 Spring in the ESB

Versioning

• If Spring components change, will
endpoints (WSDL/Schema/etc.) change?
– May be best to change e.g. listen URL for each

version

• Can use request transformers to accept
“old” messages – upconvert and dispatch

• Or can run multiple versions of the services
simultaneously
– Easier in ServiceMix (per-deploy class loader)

52 Spring in the ESB

An ESB enables SOA-based Spring apps

• Can take advantage of the strengths of:
– Spring: simple code, tests, dep. injection
– ESB: simple messaging, integration, transports
– Java EE: presentation, session bean logic

• Can leverage features in either Spring or an app
server for management, persistence, configuration

• Mule and ServiceMix have very solid Spring
integration options

• Still some architecture decisions, like anything else

Summary

Q&A
Aaron Mulder: ammulder@chariotsolutions.com

Download slides at: http://www.chariotsolutions.com/

