
Spring Framework 2.0
New

Persistence Features

Thomas Risberg

Introduction

‣ Independent Consultant, springdeveloper.com
‣Committer on the Spring Framework project

since 2003
‣Supporting the JDBC and Data Access code
‣Co-author of “Professional Java Development with

the Spring Framework” from Wrox

Thomas Risberg

‣ Spring Overview

‣ What is new in Spring 2.0?

‣ Java Persistence API
JSR 220

‣ Spring’s JDBC
Abstraction Layer

‣ The Spring Framework
Project

In this presentation:

What is Spring?
• Spring is a Lightweight Application Framework covering

all tiers of your typical business application

• Leverages services from underlying runtime
environment (e.g. J2EE Services)

• Provides AOP services for security, transactions,
management and remoting

• Integrates with other commonly used frameworks and
libraries

• Greatly simplifies development effort

• Promotes modular, reusable coding practices

Features of Spring

Spring Container

Application

Context

Bean

Factory

Security

Transactions

Spring

AOP

ORM

JMS JDBC

Web Flow

Web MVC DAO AspectJ

Management

Remoting

Spring Container

Application

Context

Bean

Factory

Security

Transactions

Spring

AOP

ORM

JMS JDBC

Web Flow

Web MVC DAO AspectJ

Management

Remoting

The Spring Triangle

Dependency
Injection

Service
Abstractions AOP

POJO

Why use Spring?

• Spring is not positioned to compete with J2EE or
Java EE - it competes with in-house frameworks

• Many products today integrate with Spring

✓ WebLogic Server
✓ IntelliJ IDEA
✓ ServiceMix
✓ Active MQ
✓ Oracle TopLink

• Next 2-3 years? Java EE 5 with EJB 3 and JSF provides
part of what Spring Offers today, but most Spring users
will still need the extra features provided by Spring

What is
new in

Spring 2.0?

• Simpler, more extensible
XML configuration

• Enhanced integration with
AspectJ

• Portlet MVC Framework

• Improvements in Web
MVC Framework

• Additional scoping options
for beans

• Ability to define beans in
scripting language like
Groovy or JRuby

• Message-driven POJOs

What about persistence?

• Support for Java Persistence API (EJB 3 JSR 220)

• JDBC simplifications:

‣ SimpleJdbcTemplate provides support for generics,
varargs and autoboxing

‣ NamedParameterJdbcTemplate replaces traditional
parameter placeholder with explicit parameter
name

‣ SqlCommand objects extends named parameter
support for ease of use

Spring’s Current
Persistence Support

• JDBC Abstraction - provides resource management
and exception translation

• Support for a growing number of O/R Mappers
‣ iBATIS SQLMaps
‣ Hibernate 2 and 3
‣ JDO including JDO 2
‣ TopLink
‣ OJB

• DAO support, transaction management and
exception translations for all data access choices

Java
Persistence

API
JSR 220

Works with POJOs

Standardizes:
- ORM Metadata

- API
- Lifecycle / Callbacks

- Query Language

Improves testability and
removes need for DTOs

PersistenceContext
 Transaction-scoped / Extended

EntityManager
 Resource-local / JTA
 Container- / Application-managed
 @PersistenceContext / JNDI / emf.createEntityManager()

EntityManagerFactory

Primary API Interfaces

API
usage
varies

between
JTA and

Resource-
local

entityManager.getTransaction().begin();
List l = entityManager.createQuery(
 "select object(s) from ticket.domain.Show s")
 .getResultList();
entityManager.getTransaction().commit();

@PersistenceContext
...

List l = entityManager.createQuery(
 "select object(s) from ticket.domain.Show s")
 .getResultList();

Spring will attempt to bridge
these differences and provide

a consistent style for
programming in various

environments.

This also applies when using
using other O/R Mapping

solutions - the same
programming style is used

throughout.

JPA Support

• In org.springframework.orm.jpa package

• Support classes correspond with ones for other ORM
implementations like Hibernate, TopLink and JDO

• JpaTemplate, JpaCallBack and JpaInterceptor
provide integration with transaction management and uses
thread bound EntityManager for the persistence context

• JpaDaoSupport is convenience class for DAO usage

• JpaTransactionManager handles resource local access
and JtaTransactionManager handles JTA transactions

• LocalEntityManagerFactorybean provides resource
local bootstrapping for Java SE while JndiObjectFactoryBean
does the JNDI lookups in Java EE environments

Persistence Example
Data Model

JPA Entity Mapping

Service/Manager Layer

Application Context

XML Configuration Simplification

VS

Direct use of JPA API

Direct use of JPA API

• To get proper transaction management use JNDI lookup in
a JTA environment and SharedEntityManagerAdapter for a
Resource-local configuration

• No exception translation provided

Spring’s
JDBC

Abstraction
Layer

New in 2.0:

SimpleJdbcTemplate

NamedParameterJdbcTemplate

SqlCommand

SimpleJdbcTemplate

• Designed to take advantage of Java 5 features

‣ generics

‣ varargs

‣ autoboxing

• Wraps a regular JdbcTemplate and if you need
additional methods use getJdbcOperations
method to access it.

SimpleJdbcTemplate

SimpleJdbcTemplate

Named Parameters

Compare this SQL statement:

select id, price, brand from product
 where price < ? and brand <> ?

with the following

select id, price, brand from product
 where price < :maxPrice
 and brand <> :unwantedBrand

NamedParameterJdbcTemplate

• Allows the use of named parameters in any SQL
statement.

‣ Use a Map to pass in parameter values

‣ Map key matches value with parameter name

‣ If parameter value is a List then placeholders will
be expanded to cover all list members - watch
the size of the list!

• Wraps a regular JdbcTemplate and if you need
additional methods use getJdbcOperations method
to access it.

NamedParameterJdbcTemplate

if value is a List we will
expand placeholders

NamedParameterJdbcTemplate

creates a Map containing
name and value

of all public getters

SqlNamedParameterHolder

Common methods:
 Map getValues()
 Map getTypes()
 void setValues(Map)
 void getTypes(Map)

SqlCommand

• Alternativ to RdbmsOperation
(SqlQuery, SqlUpdate...)

‣ No need to explicitly declare parameters - we
declare the name in the SQL statement and can
declare the Type in a SqlNamedParameterHolder

‣ Thread-safe, but lightweight and inexpensive to
create whenever needed

‣ Various execute methods depending on requested
return type:
Object executeScalar() Object executeObject(RowMapper)

List executeQuery() int executeUpdate()

SqlCommand

SqlCommand

The
Spring

Framework
Project

Started February 2003

Based on code from Rod Johnsons’ book
“J2EE Design and Development “

Website http://www.springframework.org/

CVS repository is on SourceForge
http://sourceforge.net/cvs/?group_id=73357

 http://fisheye.cenqua.com/changelog/springframework

1.0 released March 2004
1.2 released May 2005
2.0 released Q2 2006

Spring Experience conference Dec. 2005
SpringOne conference June 2006

Development & Support

• Development

‣ 80% of core committers work for Interface21

• Commercial Support

‣ Interface21 -- wrote the code
‣ BEA -- certified on WebLogic 9.0
‣ SpikeSource -- Spike Servlet/J2EE Stack
‣ SourceLabs -- SASH 1.1(certified by Oracle)

Training & Documentation

• Training
‣ Interface21
‣ Virtuas
‣ ArcMind

• Documentation / Books

Community

• Support Forum - forum.springframework.org

• User Groups

‣ Philadelphia, PA - Dallas, TX - Sydney, Australia

• Conferences

PSUG

• Philadelphia Spring Users Group

‣ http://springdeveloper.com/psug/

‣ Meeting -- Tuesday April 4, 2006 6:00pm - 9:00pm

‣ Joint meeting with the Delaware Valley BEA Users
Group

‣ Spring, BEA and Service-Oriented Architectures

