
Spring Framework 2.0 
New 

Persistence Features

Thomas Risberg



Introduction

‣ Independent Consultant, springdeveloper.com
‣Committer on the Spring Framework project 

since 2003
‣Supporting the JDBC and Data Access code
‣Co-author of “Professional Java Development with 

the Spring Framework” from Wrox
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‣ Spring Overview

‣ What is new in Spring 2.0?

‣ Java Persistence API       
JSR 220

‣ Spring’s JDBC 
Abstraction Layer

‣ The Spring Framework 
Project

In this presentation:



What is Spring?
• Spring is a Lightweight Application Framework covering 

all tiers of your typical business application

• Leverages services from underlying runtime 
environment (e.g. J2EE Services)

• Provides AOP services for security, transactions, 
management and remoting

• Integrates with other commonly used frameworks and 
libraries

• Greatly simplifies development effort 

• Promotes modular, reusable coding practices 
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Why use Spring?

• Spring is not positioned to compete with J2EE or    
Java EE - it competes with in-house frameworks

• Many products today integrate with Spring

✓ WebLogic Server
✓ IntelliJ IDEA
✓ ServiceMix
✓ Active MQ
✓ Oracle TopLink

• Next 2-3 years?  Java EE 5 with EJB 3 and JSF provides 
part of what Spring Offers today, but most Spring users 
will still need the extra features provided by Spring



What is 
new in 

Spring 2.0?

• Simpler, more extensible 
XML configuration

• Enhanced integration with 
AspectJ

• Portlet MVC Framework

• Improvements in Web 
MVC Framework

• Additional scoping options 
for beans

• Ability to define beans in 
scripting language like 
Groovy or JRuby

• Message-driven POJOs



What about persistence?

• Support for Java Persistence API (EJB 3 JSR 220)

• JDBC simplifications:

‣ SimpleJdbcTemplate provides support for generics, 
varargs and autoboxing

‣ NamedParameterJdbcTemplate replaces traditional 
parameter placeholder with explicit parameter 
name

‣ SqlCommand objects extends named parameter 
support for ease of use



Spring’s Current 
Persistence Support

• JDBC Abstraction - provides resource management 
and exception translation

• Support for a growing number of O/R Mappers
‣ iBATIS SQLMaps
‣ Hibernate 2 and 3
‣ JDO including JDO 2
‣ TopLink
‣ OJB

• DAO support, transaction management and 
exception translations for all data access choices



Java
Persistence

API 
JSR 220

Works with POJOs

Standardizes: 
- ORM Metadata

- API
- Lifecycle / Callbacks

- Query Language

Improves testability and 
removes need for DTOs



PersistenceContext
  Transaction-scoped / Extended

EntityManager
  Resource-local / JTA
  Container- / Application-managed 
  @PersistenceContext /  JNDI / emf.createEntityManager()

EntityManagerFactory

Primary API Interfaces



API
usage
varies

between 
JTA and

Resource-
local 

entityManager.getTransaction().begin();
List l = entityManager.createQuery(
  "select object(s) from ticket.domain.Show s")
  .getResultList();
entityManager.getTransaction().commit();

@PersistenceContext
...

List l = entityManager.createQuery(
  "select object(s) from ticket.domain.Show s")
  .getResultList();



Spring will attempt to bridge 
these differences and provide 

a consistent style for 
programming in various 

environments.

This also applies when using 
using other O/R Mapping 

solutions - the same 
programming style is used 

throughout.



JPA Support

• In org.springframework.orm.jpa package

• Support classes correspond with ones for other ORM 
implementations like Hibernate, TopLink and JDO

• JpaTemplate, JpaCallBack and JpaInterceptor 
provide integration with transaction management and uses 
thread bound EntityManager for the persistence context

• JpaDaoSupport is convenience class for DAO usage

• JpaTransactionManager handles resource local access 
and JtaTransactionManager handles JTA transactions

• LocalEntityManagerFactorybean provides resource 
local bootstrapping for Java SE while JndiObjectFactoryBean 
does the JNDI lookups in Java EE environments



Persistence Example
Data Model



JPA Entity Mapping



Service/Manager Layer



Application Context



XML Configuration Simplification

VS



Direct use of JPA API



Direct use of JPA API

• To get proper transaction management use JNDI lookup in 
a JTA environment and SharedEntityManagerAdapter for a 
Resource-local configuration

• No exception translation provided



Spring’s
JDBC

Abstraction 
Layer

New in 2.0:

SimpleJdbcTemplate

NamedParameterJdbcTemplate

SqlCommand



SimpleJdbcTemplate

• Designed to take advantage of Java 5 features

‣ generics

‣ varargs

‣ autoboxing

• Wraps a regular JdbcTemplate and if you need 
additional methods use getJdbcOperations 
method to access it.



SimpleJdbcTemplate



SimpleJdbcTemplate



Named Parameters

Compare this SQL statement:

select id, price, brand from product 
 where price < ? and brand <> ? 

with the following 

select id, price, brand from product 
 where price < :maxPrice 
   and brand <> :unwantedBrand 



NamedParameterJdbcTemplate

• Allows the use of named parameters in any SQL 
statement. 

‣ Use a Map to pass in parameter values

‣ Map key matches value with parameter name

‣ If parameter value is a List then placeholders will 
be expanded to cover all list members - watch 
the size of the list!

• Wraps a regular JdbcTemplate and if you need 
additional methods use getJdbcOperations method 
to access it.



NamedParameterJdbcTemplate

if value is a List we will
expand placeholders



NamedParameterJdbcTemplate

creates a Map containing 
name and value 

of all public getters



SqlNamedParameterHolder

Common methods:
 Map getValues()
 Map getTypes()
 void setValues(Map)
 void getTypes(Map)



SqlCommand

• Alternativ to  RdbmsOperation                  
(SqlQuery, SqlUpdate...)

‣ No need to explicitly declare parameters - we 
declare the name in the SQL statement and can 
declare the Type in a SqlNamedParameterHolder

‣ Thread-safe, but lightweight and inexpensive to 
create whenever needed

‣ Various execute methods depending on requested 
return type:  
Object executeScalar()  Object executeObject(RowMapper)

List executeQuery()     int executeUpdate()



SqlCommand



SqlCommand



The 
Spring

Framework
Project

Started February 2003

Based on code from Rod Johnsons’ book 
“J2EE Design and Development “

Website http://www.springframework.org/

CVS repository is on SourceForge
http://sourceforge.net/cvs/?group_id=73357

 http://fisheye.cenqua.com/changelog/springframework

1.0 released March 2004
1.2 released May 2005
2.0 released Q2 2006

Spring Experience conference Dec. 2005 
SpringOne conference June 2006



Development & Support

• Development

‣ 80% of core committers work for Interface21

• Commercial Support

‣ Interface21 -- wrote the code
‣ BEA -- certified on WebLogic 9.0
‣ SpikeSource -- Spike Servlet/J2EE Stack
‣ SourceLabs -- SASH 1.1(certified by Oracle)



Training & Documentation

• Training
‣ Interface21
‣ Virtuas
‣ ArcMind

• Documentation / Books



Community

• Support Forum - forum.springframework.org

• User Groups

‣ Philadelphia, PA - Dallas, TX - Sydney, Australia

• Conferences



PSUG

• Philadelphia Spring Users Group

‣ http://springdeveloper.com/psug/

‣  Meeting -- Tuesday April 4, 2006  6:00pm - 9:00pm

‣ Joint meeting with the Delaware Valley BEA Users 
Group

‣ Spring, BEA and Service-Oriented Architectures


