
Copyright 2006 Chariot Solutions

Aaron Mulder

CTO, Chariot Solutions

Advanced Geronimo:
Custom Components and
Distributions

2 Copyright 2006 Chariot Solutions

Agenda

● Configurations
● Configuration Configuration
● GBeans
● Case Study: ActiveMQ
● Deployment & Management
● Case Study: ServiceMix
● Custom Distributions

Copyright 2006 Chariot Solutions

Configurations

4 Copyright 2006 Chariot Solutions

Configurations

● A collection of services
● Includes any number of GBean declarations

● The smallest unit of:
● Start/stop type management
● Class loaders

● May declare dependencies on
● Other configurations
● Third-party JARs

5 Copyright 2006 Chariot Solutions

J2EE Configurations

● Every J2EE module is a configuration
● Named for the configId in the Geronimo plan for

the module (or the archive name)
● The components in the module are wrapped as

services (servlets, EJBs, etc.)
● Various container helper services...
● The normal dependency and service declarations

are present in the Geronimo deployment plan for
the module

6 Copyright 2006 Chariot Solutions

Typical Configuration

<configuration configId="MyConfig"
 xmlns="http://geronimo.apache.org/xml/ns/deployment1.0">
 <import>...</import>
 <dependency>...</dependency>
 <gbean name="MyService"
 class="some.package.MyService">
 <attribute name="foo">...</attribute>
 <reference name="bar">...</reference>
 </gbean>
 <gbean>...</gbean>
 ...
</configuration>

7 Copyright 2006 Chariot Solutions

Configuration Lifecycle

● Write plan
● Initial configuration data for each component
● All available settings may be configured in the deployment plan

● Install required JARs into repository
● Deploy plan

● Configuration is now stored in processed binary form, no longer
tied to original plan

● Manageable settings may be updated in config.xml

● Redeploy (replace) with revised plan
● Undeploy by name

8 Copyright 2006 Chariot Solutions

List Configurations (CLI)

> java jar bin/deployer.jar listmodules

Found 34 modules
 + geronimo/j2eedeployer/1.0/car
 + geronimo/webconsolejetty/1.0/car
 `> foo.war @ http://remus:8080/foo
 `> bar.war @ http://remus:8080/bar
 + welcome.war @ http://remus:8080/
 + geronimo/jettydeployer/1.0/car
 geronimo/clientsystem/1.0/car
 geronimo/ldaprealm/1.0/car
 geronimo/onlinedeployer/1.0/car
 ...

9 Copyright 2006 Chariot Solutions

List Configurations (Console)

10 Copyright 2006 Chariot Solutions

What is a CAR Anyway?

● Configuration ARchive
● A packaged version of a configuration, with

all its metadata, etc.
● All initial settings were made in the deployment plan
● In the future, the manageable settings for the CAR may

only be changed via config.xml

● It has proven to be deployable in the past
(but, no guarantees – you may have changed
the environment, etc., etc.)

● May be any configuration (EAR, service...)
● Used as part of the distribution assembly

process – more on this later

Copyright 2006 Chariot Solutions

Post-Deployment
Configuration

12 Copyright 2006 Chariot Solutions

var/config/config.xml

● This file controls:
● Which configurations are loaded, and in what order

● It lets you:
● Override manageable attributes on the services

(compared to the initial values specified in the
deployment plan for the configuration)

● Enable and disable configurations
● Add or suppress individual GBeans, though this is pretty

unusual

● It is rewritten by the server at runtime, when
you make changes (e.g. through the console
or JMX)

13 Copyright 2006 Chariot Solutions

Sample config.xml

<attributes
 xmlns="http://geronimo.apache.org/xml/ns/attributes">
 <configuration name="RMINaming">
 <gbean name="RMIRegistry">
 <attribute name="port">1099
 </attribute>
 </gbean>
 <gbean name="NamingProperties">
 <attribute name="namingProviderUrl">
 rmi://0.0.0.0:1099</attribute>
 </gbean>
 </configuration>
 <configuration name="ab">...</configuration>
</attributes>

14 Copyright 2006 Chariot Solutions

Configurations in config.xml

● Are started in the order they appear
● Must be listed in order to be started
● Must be present in the server if they're supposed to be

started

● Can be disabled with the attribute
load="false"

● Exception: a configuration will be started,
possibly out of order and even if marked as
disabled, if dependencies require it
● e.g. an EJB JAR that uses CORBA may specify the core

CORBA features as a dependency, and that should be
started even if otherwise disabled

15 Copyright 2006 Chariot Solutions

GBeans in config.xml

● Only need to be listed if there is something that
needs to be overridden

● May represent an entirely new GBean, which is to
be added to the configuration

● Can be disabled with the attribute load="false"
● May contain attribute or reference entries for any

manageable attributes/references
● Unlisted ones default to original plan values

16 Copyright 2006 Chariot Solutions

Updating config.xml

● Usually only a good idea if the server is hosed
● Won't start due to listing a configuration that's not available to

the server
● Port number conflict

● Don't bother while the server is running
● Most editing should be done by the console

● Any runtime changes to configurations/GBean properties result
in an updated config.xml

● Of course, this only works for the GBeans that the console has
edit screens for...

Copyright 2006 Chariot Solutions

GBeans

18 Copyright 2006 Chariot Solutions

GBeans are...

● Smallest individual components in Geronimo
● Manageable at runtime

● JMX
● JSR-77
● Custom Geronimo APIs
● Attributes can be inspected and changed
● Performance/statistics can be exposed

● Normally configured explicitly in a plan
● Can be created in a configuration as a "side effect" of other

things (e.g. J2EE modules)
● Some plans use custom XML formats, which are decoded to

multiple GBeans (e.g. Security Realms)

19 Copyright 2006 Chariot Solutions

GBeans have...

● A GBean class
● Which may or may not be the meaty implementation

● Metadata describing:
● The constructor to use
● Attributes
● Operations
● Implemented interfaces

● References to other GBeans (single or
multiple valued references)

20 Copyright 2006 Chariot Solutions

GBean Names

● Every GBean must have a unique name
● Based on JMX ObjectNames

● domain:name=value,name=value,...

● Specific components are dictated by JSR-77
● J2EEApplication=, j2eeType=, name=, ...

● Many times most of the values can be
defaulted
● <gbean name="foo" class=...> creates a GBean with the

full GBean Name geronimo.server:...,name=foo

21 Copyright 2006 Chariot Solutions

GBean Attributes

● May be of any type, whether Serializable or not
● Simple, Serializable types are recommended for the benefit of

remote management

● May be denoted as persistent and/or manageable
● Some "special" attributes are available

● The system can provide these to a GBean, but they are never
configurable (the GBean's ObjectName, the current Kernel,
ClassLoader, etc.)

● The GBean declares the special attributes in its metadata, as
neither persistent nor manageable

● Normally passed to the constructor (with no setter or getter
defined)

22 Copyright 2006 Chariot Solutions

More GBean Attributes

● Attributes are set via injection
● Constructor injection if there's a constructor available that

takes that attribute
● Setter injection otherwise

● Persistent attributes are saved and will be re-
injected into the GBean when it is instantiated

● Manageable attributes may be edited in
config.xml

● If an attribute is not set in the plan, it will be set
to null (for constructor injection) or not set at all
(for setter injection)

23 Copyright 2006 Chariot Solutions

GBean References

● Single-valued references
● An attribute with a type fitting the type defined for the

reference
● Configured with a full GBeanName, or a pattern like

geronimo.server:name=OtherBean,*
● But the pattern must resolve to a unique GBean!

● Multiple-valued reference
● An attribute of type java.util.Collection, with values of the

type defined for the reference
● Configured with one or more GBeanName patterns like

geronimo.server:type=BeanType,*
● (Eventually we want to add interface-based references)

● All matches must have the correct class or
interface (as defined on the reference)

24 Copyright 2006 Chariot Solutions

GBean Operations

● A method other than a straight accessor
● May have any arguments or return types

● Generally speaking any operation may be invoked from a
remote client, but if you know this shouldn't be the case you
can have non-Serializable types in the signature

● Should not change the state of the GBean
● Such a change would not normally be noticed and saved in the

persistent state, because the kernel can only observe setter
calls that go through it

● Workaround: get a kernel via the kernel special attribute, and
then call setter method on yourself through the kernel

● May still create new GBeans, change the state of other GBeans
via references, etc.

25 Copyright 2006 Chariot Solutions

GBean Interfaces

● A GBean does not strictly require any interface
● Generally must have either an empty constructor or implement

an interface

● It's most convenient to have a management
interface including key management attributes
and operations
● Any client can request a proxy to a GBean that implements one

or all GBean interfaces
● Much easier to code to an interface than e.g. JSR-77
setAttribute("gbean","name","value")

● Often want to implement GBeanLifecycle in
order to take action during startup/shutdown

26 Copyright 2006 Chariot Solutions

GBean Metadata

● Stored in an object of type GBeanInfo
● This must be provided by a static
getGBeanInfo method on the GBean class

● There are helper routines to construct it
● This is really the only requirement of the

GBean class
● The actual implementation with all the operations and

attributes and things may be a separate class
● This makes it easy to wrap a non Geronimo-specific

service with GBeans for startup, configuration, and
management

27 Copyright 2006 Chariot Solutions

Sample GBean Metadata

public static final GBeanInfo GBEAN_INFO;
static {
 GBeanInfoBuilder factory =
 GBeanInfoBuilder.createStatic(
 GBeanClass.class, ImplClass.class);
 factory.addAttribute("att1name", Class);
 factory.addOperation("op1name");
 factory.addInterface(Class);
 factory.addReference("ref1name", Class);
 factory.setConstructor(new
 String[]{"att1name", "att2name"});
 GBEAN_INFO = factory.getBeanInfo();
}

Copyright 2006 Chariot Solutions

Case Study: ActiveMQ

29 Copyright 2006 Chariot Solutions

ActiveMQ Overview

● The ActiveMQ server needs a Broker plus one
or more Connectors (transports)

● Then various connection factories and
destinations can be created as needed

● Geronimo wants an embedded broker, with
at a minimum the in-VM transport (but
usually TCP/IP too)
● This means a Broker GBean, one or more Connector

GBeans, and a configuration for them

30 Copyright 2006 Chariot Solutions

ActiveMQ GBeans

● For ActiveMQ 3.x
● See activemq-gbean module in the ActiveMQ source
● GBeans for

● Container (broker)
● Various persistent stores
● Connector
● Manager (for management purposes, more later)

● For ActiveMQ 4.x
● Haven't been updated yet, in the sandbox

31 Copyright 2006 Chariot Solutions

ActiveMQ 3.x GBeans

● The Container GBean has a reference to the first
persistence GBean

● Each persistence GBean has a reference to the
next (cache sits on journal on DB...)
● Some have additional stuff, such as a directory or database

settings

● Each connector GBean has a reference to a
container GBean (the connector channels I/O to
that container...)

● The manager is not directly connected to the rest

32 Copyright 2006 Chariot Solutions

ActiveMQ 3.x GBean Style

● Generally pretty thin layer on top of existing
ActiveMQ objects, used to:
● Gather configuration data for the underlying objects
● Wire the objects together
● Allow them to be managed by the console

● Amount of configuration means they are non-
trivial, but you don't see any message-
handling code there

33 Copyright 2006 Chariot Solutions

ActiveMQ: The Gory Details

● Not going to show in full here
● For the GBeans, poke around at:

● svn+ssh://svn.activemq.org/scm/activemq/trunk/active
mq/modules/gbean/src/java/org/activemq/

● For the configuration plan, look at:
● https://svn.apache.org/repos/asf/geronimo/branches/1

.0/configs/activemq-broker/src/plan/plan.xml

Copyright 2006 Chariot Solutions

Deployment and
Management

35 Copyright 2006 Chariot Solutions

Deployment

● Geronimo has a master Deployer GBean (in
the geronimo-gbean-deployer configuration)

● The Deployer has a multi-value reference to
ConfigBuilder implementations

● During deployment, each ConfigBuilder gets
to look at a module and decide whether it
handles it

● To add modules of a new type, simply create
and deploy a new ConfigBuilder

36 Copyright 2006 Chariot Solutions

Config Builders

● Normally looks for a specific deployment
descriptor (WEBINF/web.xml, etc.)

● Responsible for constructing all the GBeans
required to represent the application module
being deployed

● Gets an archive and maybe a plan as input, and
produces a Configuration full of application
GBeans as output

● Itself a GBean, of course

37 Copyright 2006 Chariot Solutions

Config Builder Implemenation

● Normally heinously complex
● All the GBean classes must already exist
● The builder prepares the instance-level

metadata for each GBean
● Values for each attribute or reference specified in the

GBeanInfo for that GBean

● Often driven by processing XML files (such as
J2EE deployment descriptors)

● Assembles a configuration as a set of all the
GBeans for the input module

38 Copyright 2006 Chariot Solutions

Why Do You Care?

● To add new module types, of course
● A Spring archive format
● A Hibernate archive format
● A ServiceMix archive format
● A whatever-you-want archive format

● Many services don't require this, but think it
over
● A scheduler may typically not need this...
● But what if you define a "job" archive format? Then you

could hot deploy and start and stop jobs at runtime using
all the existing Geronimo plumbing...

39 Copyright 2006 Chariot Solutions

Management

● Any GBean may be invoked via JMX and JSR-
77
● Looks a lot like reflection (ugh)
● Keep signatures simple for this!

● Providing an interface lets a client build and
interact with a proxy
● e.g. A generated class that implements the requested

interface and makes the nasty kernel calls entirely under
the covers

● Integrating the service interface into the
JSR-77 component tree can make it easy to
locate the component and/or a proxy

40 Copyright 2006 Chariot Solutions

JSR-77 Component Tree

● JSR-77 starts with a Domain; the domain has
Servers; servers have JVMs and applications
and...

● Can navigate around (Domain.getServers(),
etc.), though the navigation methods return
ObjectNames
● Some helper classes are around to automatically decode

these to proxies

● This is fine for a custom distribution or core
Geronimo functionality
● No clean process for registering or looking up extensions

that may or may not be there

41 Copyright 2006 Chariot Solutions

Customizing JSR-77 Components

● The JSR-77 interfaces defined by the spec are
in org.apache.geronimo.management

● Geronimo extensions are in
org.apache.geronimo.management.geronimo
● Add Geronimo-specific methods, e.g. to get the ServerInfo

or WebContainer for a J2EEServer

● Non-product-specific interfaces can be added
here (e.g. RulesEngine, but not DroolsEngine)

42 Copyright 2006 Chariot Solutions

Manager Classes

● For services that have ancillary connectors or
other configurable services
● e.g. web container has ports/protocols
● CORBA ORB has TSS/CSS configurations

● A manager class has methods to navigate to,
add, and remove those children
● Otherwise, can be hard for a client to resolve references,

apply default values, etc.

● Examples: JMS manager, Web container
manager

43 Copyright 2006 Chariot Solutions

Management Console

● Built from portlets
● Can add a portlet for any service
● Has lots of hooks for accessing management

proxies, etc.
● Not as nice as it could be

● Must manually configure the contents of each portal page
● One class loader for the whole console, so the custom service's

interfaces must be on the console class path
● Scheduled for enhancement

Copyright 2006 Chariot Solutions

Case Study: ServiceMix

45 Copyright 2006 Chariot Solutions

ServiceMix Overview

● Java Business Integration (JBI) container
● Need a container GBean to initialize ServiceMix and any

container-level services
● Uses Geronimo thread pool and Geronimo transaction manager

● Individual Service Assemblies (packaged as zip
file) can be deployed to ServiceMix
● Need to add a deployer service to handle runtime deployment

of service assemblies

● Potential for still more integration
● Binding components to expose other services in Geronimo to

the JBI bus?
● Security spanning J2EE application code and JBI calls?

46 Copyright 2006 Chariot Solutions

ServiceMix GBean Detail

● Container GBean gets the basic configuration
items, and starts and stops the ServiceMix
container
● Thread pool, configuration directory, etc.

● Deployer GBean knows how to pass service
assemblies to the container (which then uses the
normal logic)
● Reference to the container
● Default parent for the service assembly Configuration

47 Copyright 2006 Chariot Solutions

ServiceMix Container GBean

<gbean name="ServiceMix"
class="org.apache.servicemix.gbean.Service
MixGBean">
 <attribute name="name">ServiceMix
 </attribute>
 <attribute name="directory">servicemix/
 </attribute>
 <reference
 name="transactionContextManager">...
 </reference>
 <reference name="workManager">...
 </reference>
</gbean>

48 Copyright 2006 Chariot Solutions

ServiceMix Deployer GBean

<gbean name="ServiceMixDeployer"
class="org.apache.servicemix.gbean.Service
MixConfigBuilder">
 <attribute name="defaultParentId">
 ServiceMixConfigID
 </attribute>
 <reference name="servicemix">
 <name>ServiceMix</name>
 </reference>
</gbean>

49 Copyright 2006 Chariot Solutions

Room For Improvement

● The container configuration is still largely
controlled by servicemix.xml

● Would be nice to have GBeans wrapping JBI
components, so statically configured
components could be configured that way
● Would then also use those for components deployed at

runtime for additional management, statistics, etc.

● Would be nice to add some more GBeans with
normalized message router & bus statistics,
etc.

Copyright 2006 Chariot Solutions

Custom Distributions

51 Copyright 2006 Chariot Solutions

A Custom Distribution

● A version of Geronimo including only the services
(configurations) you want

● Maybe more lightweight
● Maybe more heavyweight
● Maybe just different components
● Could just start with the default distribution and

deploy and undeploy things, though that's not as
clean and repeatable

52 Copyright 2006 Chariot Solutions

Elements of a Distribution

● Each configuration is packaged into a
portable format known as a CAR file

● This includes the processed configuration,
metadata, etc.

● A distribution (assembly) is built by starting
empty and applying CAR files until the server
looks like what you want

● Then zipped for distribution

53 Copyright 2006 Chariot Solutions

Distribution Prerequisites

● Anything you want to add must be either:
● An application (normally with a Geronimo deployment plan)
● A service configuration (itself a Geronimo deployment plan)

● Anything you want to remove must be in a
separate plan from the things you want to keep
● In 1.0, for example, the EJB container was in the same plan

as the core J2EE infrastructure, meaning you couldn't keep
the transaction manager but drop EJBs

54 Copyright 2006 Chariot Solutions

Creating a Distribution

● The current Geronimo assemblies are built using
a series of Maven plugins

● The packaging plugin creates a CAR file
● See examples under geronimo/configs/*/

● The assembly plugin applies CAR files
● See examples at geronimo/assemblies/j2ee-(webcontainer)-

server/

55 Copyright 2006 Chariot Solutions

Room for Improvement

● Would be nice to have a wide selection of CAR
files online somewhere, and an apt-like tool to
list, download, and install them

● Would be nice to have command-line tools to
import/export CAR files from a Geronimo
installation

● Currently difficult to handle certain config
builders that things depend on
● Web Services rely on the Web Container, but the Web and EJB

deployers also rely on a Web Services builder being defined...
● Can replace one of these with a "null" builder, but cannot leave

it out entirely without having unresolved reference errors

Copyright 2006 Chariot Solutions

Q&A
http://chariotsolutions.com/geronimo/

