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Configurations
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Configurations

● A collection of services
● Includes any number of GBean declarations

● The smallest unit of:
● Start/stop type management
● Class loaders

● May declare dependencies on
● Other configurations
● Third-party JARs
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J2EE Configurations

● Every J2EE module is a configuration
● Named for the configId in the Geronimo plan for 

the module (or the archive name)
● The components in the module are wrapped as 

services (servlets, EJBs, etc.)
● Various container helper services...
● The normal dependency and service declarations 

are present in the Geronimo deployment plan for 
the module



6 Copyright 2006 Chariot Solutions

Typical Configuration

<configuration configId="MyConfig"
       xmlns="http://geronimo.apache.org/xml/ns/deployment1.0">
  <import>...</import>
  <dependency>...</dependency>
  <gbean name="MyService"
         class="some.package.MyService">
    <attribute name="foo">...</attribute>
    <reference name="bar">...</reference>
  </gbean>
  <gbean>...</gbean>
  ...
</configuration>
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Configuration Lifecycle

● Write plan
● Initial configuration data for each component
● All available settings may be configured in the deployment plan

● Install required JARs into repository
● Deploy plan

● Configuration is now stored in processed binary form, no longer 
tied to original plan

● Manageable settings may be updated in config.xml

● Redeploy (replace) with revised plan
● Undeploy by name
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List Configurations (CLI)

> java jar bin/deployer.jar listmodules

Found 34 modules
  + geronimo/j2eedeployer/1.0/car
  + geronimo/webconsolejetty/1.0/car
      `> foo.war @ http://remus:8080/foo
      `> bar.war @ http://remus:8080/bar
  + welcome.war @ http://remus:8080/
  + geronimo/jettydeployer/1.0/car
    geronimo/clientsystem/1.0/car
    geronimo/ldaprealm/1.0/car
    geronimo/onlinedeployer/1.0/car
    ...
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List Configurations (Console)
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What is a CAR Anyway?

● Configuration ARchive
● A packaged version of a configuration, with 

all its metadata, etc.
● All initial settings were made in the deployment plan
● In the future, the manageable settings for the CAR may 

only be changed via config.xml

● It has proven to be deployable in the past 
(but, no guarantees – you may have changed 
the environment, etc., etc.)

● May be any configuration (EAR, service...)
● Used as part of the distribution assembly 

process – more on this later
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Post-Deployment
Configuration
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var/config/config.xml

● This file controls:
● Which configurations are loaded, and in what order

● It lets you:
● Override manageable attributes on the services 

(compared to the initial values specified in the 
deployment plan for the configuration)

● Enable and disable configurations
● Add or suppress individual GBeans, though this is pretty 

unusual

● It is rewritten by the server at runtime, when 
you make changes (e.g. through the console 
or JMX)
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Sample config.xml

<attributes
      xmlns="http://geronimo.apache.org/xml/ns/attributes">
  <configuration name="RMINaming">
    <gbean name="RMIRegistry">
      <attribute name="port">1099
                             </attribute>
    </gbean>
    <gbean name="NamingProperties">
      <attribute name="namingProviderUrl">
            rmi://0.0.0.0:1099</attribute>
    </gbean>
  </configuration>
  <configuration name="ab">...</configuration>
</attributes>
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Configurations in config.xml

● Are started in the order they appear
● Must be listed in order to be started
● Must be present in the server if they're supposed to be 

started

● Can be disabled with the attribute 
load="false"

● Exception: a configuration will be started, 
possibly out of order and even if marked as 
disabled, if dependencies require it
● e.g. an EJB JAR that uses CORBA may specify the core 

CORBA features as a dependency, and that should be 
started even if otherwise disabled
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GBeans in config.xml

● Only need to be listed if there is something that 
needs to be overridden

● May represent an entirely new GBean, which is to 
be added to the configuration

● Can be disabled with the attribute load="false"
● May contain attribute or reference entries for any 

manageable attributes/references
● Unlisted ones default to original plan values
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Updating config.xml

● Usually only a good idea if the server is hosed
● Won't start due to listing a configuration that's not available to 

the server
● Port number conflict

● Don't bother while the server is running
● Most editing should be done by the console

● Any runtime changes to configurations/GBean properties result 
in an updated config.xml

● Of course, this only works for the GBeans that the console has 
edit screens for...
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GBeans
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GBeans are...

● Smallest individual components in Geronimo
● Manageable at runtime

● JMX
● JSR-77
● Custom Geronimo APIs
● Attributes can be inspected and changed
● Performance/statistics can be exposed

● Normally configured explicitly in a plan
● Can be created in a configuration as a "side effect" of other 

things (e.g. J2EE modules)
● Some plans use custom XML formats, which are decoded to 

multiple GBeans (e.g. Security Realms)
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GBeans have...

● A GBean class
● Which may or may not be the meaty implementation

● Metadata describing:
● The constructor to use
● Attributes
● Operations
● Implemented interfaces

● References to other GBeans (single or 
multiple valued references)
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GBean Names

● Every GBean must have a unique name
● Based on JMX ObjectNames

● domain:name=value,name=value,...

● Specific components are dictated by JSR-77
● J2EEApplication=, j2eeType=, name=, ...

● Many times most of the values can be 
defaulted
● <gbean name="foo" class=...> creates a GBean with the 

full GBean Name geronimo.server:...,name=foo
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GBean Attributes

● May be of any type, whether Serializable or not
● Simple, Serializable types are recommended for the benefit of 

remote management

● May be denoted as persistent and/or manageable
● Some "special" attributes are available

● The system can provide these to a GBean, but they are never 
configurable (the GBean's ObjectName, the current Kernel, 
ClassLoader, etc.)

● The GBean declares the special attributes in its metadata, as 
neither persistent nor manageable

● Normally passed to the constructor (with no setter or getter 
defined)
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More GBean Attributes

● Attributes are set via injection
● Constructor injection if there's a constructor available that 

takes that attribute
● Setter injection otherwise

● Persistent attributes are saved and will be re-
injected into the GBean when it is instantiated

● Manageable attributes may be edited in 
config.xml

● If an attribute is not set in the plan, it will be set 
to null (for constructor injection) or not set at all 
(for setter injection)
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GBean References

● Single-valued references
● An attribute with a type fitting the type defined for the 

reference
● Configured with a full GBeanName, or a pattern like 

geronimo.server:name=OtherBean,*
● But the pattern must resolve to a unique GBean!

● Multiple-valued reference
● An attribute of type java.util.Collection, with values of the 

type defined for the reference
● Configured with one or more GBeanName patterns like 

geronimo.server:type=BeanType,*
● (Eventually we want to add interface-based references)

● All matches must have the correct class or 
interface (as defined on the reference)
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GBean Operations

● A method other than a straight accessor
● May have any arguments or return types

● Generally speaking any operation may be invoked from a 
remote client, but if you know this shouldn't be the case you 
can have non-Serializable types in the signature

● Should not change the state of the GBean
● Such a change would not normally be noticed and saved in the 

persistent state, because the kernel can only observe setter 
calls that go through it

● Workaround: get a kernel via the kernel special attribute, and 
then call setter method on yourself through the kernel

● May still create new GBeans, change the state of other GBeans 
via references, etc.
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GBean Interfaces

● A GBean does not strictly require any interface
● Generally must have either an empty constructor or implement 

an interface

● It's most convenient to have a management 
interface including key management attributes 
and operations
● Any client can request a proxy to a GBean that implements one 

or all GBean interfaces
● Much easier to code to an interface than e.g. JSR-77 
setAttribute("gbean","name","value")

● Often want to implement GBeanLifecycle in 
order to take action during startup/shutdown
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GBean Metadata

● Stored in an object of type GBeanInfo
● This must be provided by a static 
getGBeanInfo method on the GBean class

● There are helper routines to construct it
● This is really the only requirement of the 

GBean class
● The actual implementation with all the operations and 

attributes and things may be a separate class
● This makes it easy to wrap a non Geronimo-specific 

service with GBeans for startup, configuration, and 
management
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Sample GBean Metadata

public static final GBeanInfo GBEAN_INFO;
static {
  GBeanInfoBuilder factory =
    GBeanInfoBuilder.createStatic(
      GBeanClass.class, ImplClass.class);
  factory.addAttribute("att1name", Class);
  factory.addOperation("op1name");
  factory.addInterface(Class);
  factory.addReference("ref1name", Class);
  factory.setConstructor(new 
        String[]{"att1name", "att2name"});
  GBEAN_INFO = factory.getBeanInfo();
}
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Case Study: ActiveMQ
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ActiveMQ Overview

● The ActiveMQ server needs a Broker plus one 
or more Connectors (transports)

● Then various connection factories and 
destinations can be created as needed

● Geronimo wants an embedded broker, with 
at a minimum the in-VM transport (but 
usually TCP/IP too)
● This means a Broker GBean, one or more Connector 

GBeans, and a configuration for them
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ActiveMQ GBeans

● For ActiveMQ 3.x
● See activemq-gbean module in the ActiveMQ source
● GBeans for

● Container (broker)
● Various persistent stores
● Connector
● Manager (for management purposes, more later)

● For ActiveMQ 4.x
● Haven't been updated yet, in the sandbox
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ActiveMQ 3.x GBeans

● The Container GBean has a reference to the first 
persistence GBean

● Each persistence GBean has a reference to the 
next (cache sits on journal on DB...)
● Some have additional stuff, such as a directory or database 

settings

● Each connector GBean has a reference to a 
container GBean (the connector channels I/O to 
that container...)

● The manager is not directly connected to the rest
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ActiveMQ 3.x GBean Style

● Generally pretty thin layer on top of existing 
ActiveMQ objects, used to:
● Gather configuration data for the underlying objects
● Wire the objects together
● Allow them to be managed by the console

● Amount of configuration means they are non-
trivial, but you don't see any message-
handling code there
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ActiveMQ: The Gory Details

● Not going to show in full here
● For the GBeans, poke around at:

● svn+ssh://svn.activemq.org/scm/activemq/trunk/active
mq/modules/gbean/src/java/org/activemq/

● For the configuration plan, look at:
● https://svn.apache.org/repos/asf/geronimo/branches/1

.0/configs/activemq-broker/src/plan/plan.xml
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Deployment and 
Management
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Deployment

● Geronimo has a master Deployer GBean (in 
the geronimo-gbean-deployer configuration)

● The Deployer has a multi-value reference to 
ConfigBuilder implementations

● During deployment, each ConfigBuilder gets 
to look at a module and decide whether it 
handles it

● To add modules of a new type, simply create 
and deploy a new ConfigBuilder
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Config Builders

● Normally looks for a specific deployment 
descriptor (WEBINF/web.xml, etc.)

● Responsible for constructing all the GBeans 
required to represent the application module 
being deployed

● Gets an archive and maybe a plan as input, and 
produces a Configuration full of application 
GBeans as output

● Itself a GBean, of course
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Config Builder Implemenation

● Normally heinously complex
● All the GBean classes must already exist
● The builder prepares the instance-level 

metadata for each GBean
● Values for each attribute or reference specified in the 

GBeanInfo for that GBean

● Often driven by processing XML files (such as 
J2EE deployment descriptors)

● Assembles a configuration as a set of all the 
GBeans for the input module
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Why Do You Care?

● To add new module types, of course
● A Spring archive format
● A Hibernate archive format
● A ServiceMix archive format
● A whatever-you-want archive format

● Many services don't require this, but think it 
over
● A scheduler may typically not need this...
● But what if you define a "job" archive format?  Then you 

could hot deploy and start and stop jobs at runtime using 
all the existing Geronimo plumbing...
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Management

● Any GBean may be invoked via JMX and JSR-
77
● Looks a lot like reflection (ugh)
● Keep signatures simple for this!

● Providing an interface lets a client build and 
interact with a proxy
● e.g. A generated class that implements the requested 

interface and makes the nasty kernel calls entirely under 
the covers

● Integrating the service interface into the 
JSR-77 component tree can make it easy to 
locate the component and/or a proxy
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JSR-77 Component Tree

● JSR-77 starts with a Domain; the domain has 
Servers; servers have JVMs and applications 
and...

● Can navigate around (Domain.getServers(), 
etc.), though the navigation methods return 
ObjectNames
● Some helper classes are around to automatically decode 

these to proxies

● This is fine for a custom distribution or core 
Geronimo functionality
● No clean process for registering or looking up extensions 

that may or may not be there



41 Copyright 2006 Chariot Solutions

Customizing JSR-77 Components

● The JSR-77 interfaces defined by the spec are 
in org.apache.geronimo.management

● Geronimo extensions are in 
org.apache.geronimo.management.geronimo
● Add Geronimo-specific methods, e.g. to get the ServerInfo 

or WebContainer for a J2EEServer

● Non-product-specific interfaces can be added 
here (e.g. RulesEngine, but not DroolsEngine)
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Manager Classes

● For services that have ancillary connectors or 
other configurable services
● e.g. web container has ports/protocols
● CORBA ORB has TSS/CSS configurations

● A manager class has methods to navigate to, 
add, and remove those children
● Otherwise, can be hard for a client to resolve references, 

apply default values, etc.

● Examples: JMS manager, Web container 
manager
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Management Console

● Built from portlets
● Can add a portlet for any service
● Has lots of hooks for accessing management 

proxies, etc.
● Not as nice as it could be

● Must manually configure the contents of each portal page
● One class loader for the whole console, so the custom service's 

interfaces must be on the console class path
● Scheduled for enhancement
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Case Study: ServiceMix
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ServiceMix Overview

● Java Business Integration (JBI) container
● Need a container GBean to initialize ServiceMix and any 

container-level services
● Uses Geronimo thread pool and Geronimo transaction manager

● Individual Service Assemblies (packaged as zip 
file) can be deployed to ServiceMix
● Need to add a deployer service to handle runtime deployment 

of service assemblies

● Potential for still more integration
● Binding components to expose other services in Geronimo to 

the JBI bus?
● Security spanning J2EE application code and JBI calls?
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ServiceMix GBean Detail

● Container GBean gets the basic configuration 
items, and starts and stops the ServiceMix 
container
● Thread pool, configuration directory, etc.

● Deployer GBean knows how to pass service 
assemblies to the container (which then uses the 
normal logic)
● Reference to the container
● Default parent for the service assembly Configuration
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ServiceMix Container GBean

<gbean name="ServiceMix"
class="org.apache.servicemix.gbean.Service
MixGBean">
  <attribute name="name">ServiceMix
  </attribute>
  <attribute name="directory">servicemix/
  </attribute>
  <reference 
    name="transactionContextManager">...
  </reference>
  <reference name="workManager">...
  </reference>
</gbean>
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ServiceMix Deployer GBean

<gbean name="ServiceMixDeployer"
class="org.apache.servicemix.gbean.Service
MixConfigBuilder">
  <attribute name="defaultParentId">
    ServiceMixConfigID
  </attribute>
  <reference name="servicemix">
    <name>ServiceMix</name>
  </reference>
</gbean>
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Room For Improvement

● The container configuration is still largely 
controlled by servicemix.xml

● Would be nice to have GBeans wrapping JBI 
components, so statically configured 
components could be configured that way
● Would then also use those for components deployed at 

runtime for additional management, statistics, etc.

● Would be nice to add some more GBeans with 
normalized message router & bus statistics, 
etc.
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Custom Distributions
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A Custom Distribution

● A version of Geronimo including only the services 
(configurations) you want

● Maybe more lightweight
● Maybe more heavyweight
● Maybe just different components
● Could just start with the default distribution and 

deploy and undeploy things, though that's not as 
clean and repeatable
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Elements of a Distribution

● Each configuration is packaged into a 
portable format known as a CAR file

● This includes the processed configuration, 
metadata, etc.

● A distribution (assembly) is built by starting 
empty and applying CAR files until the server 
looks like what you want

● Then zipped for distribution
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Distribution Prerequisites

● Anything you want to add must be either:
● An application (normally with a Geronimo deployment plan)
● A service configuration (itself a Geronimo deployment plan)

● Anything you want to remove must be in a 
separate plan from the things you want to keep
● In 1.0, for example, the EJB container was in the same plan 

as the core J2EE infrastructure, meaning you couldn't keep 
the transaction manager but drop EJBs
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Creating a Distribution

● The current Geronimo assemblies are built using 
a series of Maven plugins

● The packaging plugin creates a CAR file
● See examples under geronimo/configs/*/

● The assembly plugin applies CAR files
● See examples at geronimo/assemblies/j2ee-(webcontainer)-

server/
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Room for Improvement

● Would be nice to have a wide selection of CAR 
files online somewhere, and an apt-like tool to 
list, download, and install them

● Would be nice to have command-line tools to 
import/export CAR files from a Geronimo 
installation

● Currently difficult to handle certain config 
builders that things depend on 
● Web Services rely on the Web Container, but the Web and EJB 

deployers also rely on a Web Services builder being defined...
● Can replace one of these with a "null" builder, but cannot leave 

it out entirely without having unresolved reference errors
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Q&A
http://chariotsolutions.com/geronimo/


