
Spring in the Enterprise

  Solutions Provider
  Open Source Project
  chariotsolutions.com

  Seasoned Application Architects
  Education

  chariotsolutions.com/education
  Spring
  Maven
  etc

  Techcasts
  Podcast with open source industry leaders
  techcast.chariotsolutions.com/

Session Topics

1.  What is Spring & Why use it?

2.  Architecting in Spring

3.  Enterprise Spring

4.  Spring & SOA

5.  Modular Spring w/ OSGi

6.  Spring RAD & Tools

Spring Theory

What is Spring? - The Basics

  Open Source Framework
  Bean Container

  Bean Lifecycle Management
  Bean Scope
  Post Processing Hooks
  Event Processing

  Inversion of Control (IoC)
  Dependency Injection (DI)

  Centralized Configuration
  Annotation Support <XML />
 @Annotations

What is Spring? - Features

  Core
  Standard Java Apps

  Spring MVC
  Powerful controller config
  Flexible data formatting
  RESTful

  Rich Web Applications
  Web Flow
  BlazeDS (Flex)
  Spring Faces (JSF)
  Spring JS
  Spring JSP/JSTL

  Web Flow
  Stateful Page Flows

  Enterprise Integration
  JMS
  Remoting
  Spring Integration
  Spring Batch
  Web Services

Why Use Spring? – Core Benefits

  POJOs
  Our Java Beans
  GOAL: Beans are technology & platform agnostic

  Bean Lifecycle & Dependency Management
  no more “new myClass()”

  Standard Java Technologies
  JSR-303, JSR-250, JSR-317, etc.

  Data Management
  Conversion, Marshaling, Formatting
  Data from WS, UI, Remoting, Integration, JMS, etc.

Why Use Spring? – Scalable

  Configuration Flexibility
  XML, Annotations, JavaConfigX

  Implementation Changes w/o Recompile!

  Plumbing handled for us
  If it “sucks” in Java, Spring makes it “suck less”

  Aspect Oriented Programming (AOP)

MyBean

RMI

JMS

X
M
L

Why use Spring? - AOP

  Spring uses AOP to perform
common operations
  Transactional processing
  Data Access & Exception

Wrapping
  Security
  etc.

  Write Aspects to Augment
POjOs

  Spring AOP and AspectJ

Why use Spring? - Enterprise Features

  JTA/XA
  Spring Security

  Authentication

  Authorization

  SOAP & RESTful WS

  Spring Integration
  Spring Batch
  Remoting

  RMI

  HTTP

  JEE Server Support
  GlassFish
  JBoss
  Tomcat
  WebLogic
  Websphere

  JNDI Access

  Queues

  DB Resources

Why use Spring? – Comprehensive

Session Topics

1.  What is Spring & Why use it?

2.  Architecting in Spring

3.  Enterprise Spring

4.  Spring & SOA

5.  Modular Spring w/ OSGi

6.  Spring RAD & Tools

Architecting in Spring

Architecting Services with POJOs

  Plain Old Java Objects
  Create Services as POJOs
  Expose Services via Configuration
  Do Not:

  import, extend or inject framework or technology specific
classes

Gordo’s Rule
  It’s Not a POJO if you have plumbing/framework

references in the “imports”.

Session Topics

1.  What is Spring & Why use it?

2.  Architecting in Spring

3.  Enterprise Spring

4.  Spring & SOA

5.  Modular Spring w/ OSGi

6.  Spring RAD & Tools

Enterprise Spring Projects

Spring Web Flow

  Stateful Web Page Flows

  Old “wizard” style

  Plugs into Spring MVC
Controllers

  Use-Case:
  Site Registration & Payment

Spring Security

  Separates Authentication from Authorization
  Simple to configure
  Feature Rich

  Users, Roles, Groups, Voters, ACL

  Authentication
  DBMS – existing or custom
  LDAP

  Authorization
  UI Components
  Methods
  URLs

Spring Security Overview

Spring Integration

Architect?

Must Know EIP!!!

YES!

Mail Sender

  Use-Case: Trigger Mail to send to Gmail
  Given MessageRecipient Bean
  Advantages?

Spring Batch

  Large Dataset Processing

  Offline and Online
  Persistent Job states
  Transaction size configuration
  Job Segment Recovery
  Scheduled or Triggered Jobs
  Web Console

  Use in simple psv main app
  Use in enterprise apps

Spring Integration Flows

  Use-Case: File Uploading from UI, parse & persist
  Large Files
  File Indexing & Searching

Spring Integration & Batch

  Receive notification, retrieve file, parse & persist

Session Topics

1.  What is Spring & Why use it?

2.  Architecting in Spring

3.  Enterprise Spring

4.  Spring & SOA

5.  Modular Spring w/ OSGi

6.  Spring RAD & Tools

Spring & SOA

  Spring SOAP Web Services

  Spring RESTful Web Services

  Spring Remoting
  RMI
  HTTP
  Hessian & Burlap
  Corba IIOP
  EJB Invocation

Session Topics

1.  What is Spring & Why use it?

2.  Architecting in Spring

3.  Enterprise Spring

4.  Spring & SOA

5.  Modular Spring w/ OSGi

6.  Spring RAD & Tools

Modular Java with OSGi

  Disciplined paradigm

  Reduces:
  Classpath hell!

  Controlled QA

  Only deploy modules
needed or bought

OSGi Container

  A dynamic component platform

  Configures, starts & stops components at
runtime

  Provides a set of Management APIs and lifecycle events

  Products:
  Apache Felix
  Eclipse Equinox
  Eclipse Virgo
  Knopflerfish

OSGi Bundles

  Bundle
  Set of classes & resources deployed as a

versioned module
  Can depend on other bundles by version

ranges

  A Java archive
  Includes special Manifest entries in
META-INF/MANIFEST.MF

  Deployed to container

  Can be extended with Fragments

Service Registry

Bundle Lifecycle

  Installed

  Resolved

  Starting

  Active

  Stopping

  Uninstalled

Modular Java - OSGi

  Eclipse Gemini
  Formerly: Spring Dynamic Modules
  Spring Blueprint service – Bundle extension for Bean Context
  Bundle activation
  Service registration

  Eclipse Virgo
  Formerly: Spring dm Server
  Full OSGi server platform
  Bundle Provisioning
  Console Management & Logging
  Modular UI Components
  Module Scoping

Bundle Manifest

  Contains identifying information
  Lists exported and imported packages
  Can provide a Bundle Activator
  Can list constraints such as JDK version, etc.

Manifest-Version: 1.0!
Bundle-ManifestVersion: 2!
Bundle-SymbolicName: maven-osgi-demo-services!
Bundle-Name: Maven OSGi Demo – Services!
Bundle-Version: 1.0.0.SNAPSHOT!
Export-Package: com.chariot.services!
Bundle-Activator: com.chariot.services.ServiceActivator!
Import-Package:
com.chariot.services,com.chariot.services.impl,com.cha!
 riot.services.interfaces,org.osgi.framework;version="1.3" !

How does Spring help?

  Each Bundle has a Spring Context
  Services Exposed / Imported via OSGi namespace

<beans xmlns="http://www.springframework.org/schema/beans"!
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"!
 xmlns:osgi="http://www.springframework.org/schema/osgi"!
 xsi:schemaLocation="http://www.springframework.org/schema/beans !

!http://www.springframework.org/schema/beans/spring-beans-2.5.xsd!
!http://www.springframework.org/schema/osgi !
!http://www.springframework.org/schema/osgi/spring-osgi-1.0.xsd">!

<osgi:service id="exampleBeanService” !
!ref="exampleBean"!

 interface="com.chariot.demo.bean.ExampleBean"/>!

</beans>!

Eclipse Virgo

  OSGi Server Platform built upon Eclipse Equinox

  Group bundles for deployment into modules

  Module deployment via PAR and PLAN files

  Provisioning
  Locate bundles in repositories
  Local or Remote repositories

  Admin Console
  Deploy & Manage Artifacts
  Diagnostic dumps
  Bundle wiring

  Web Server
  Supports standard WAR files
  Ships with Tomcat

Session Topics

1.  What is Spring & Why use it?

2.  Architecting in Spring

3.  Enterprise Spring

4.  Spring & SOA

5.  Modular Spring w/ OSGi

6.  Spring RAD & Tools

RAD Tools

  Roo
  Build and configure Java objects
  Interactive management
  Demonstrates Best Practices
  Database Reverse engineering

  Grails
  Built on the Spring & Hibernate platform
  Dynamic coding with Groovy language
  Completely supports Java libraries
  Hundreds of plug-ins

SpringSource Tool Suite

  Built on the very popular Eclipse IDE

  Provides Spring specific features

  View components
  Bean Dependency Relationships
  Integration Flows

  Supports Roo, Grails & Groovy

Summary

  Comprehensive framework

  Java Standards

  Extensible

  Focus on Problem Domain

  Configure System Domain

  Designed RI for Eclipse OSGi Modular Projects

