‘s" TERRACOTTA

Transparently Clustered Spring

Jonas Boneér - Eugene Kuleshov
Terracotta, Inc.

Agenda

= QOverview of clustering strategies today
— Benefits and drawbacks

The ideal solution
— The need for JVM-level clustering

= |ntroduction to Terracotta for Spring
— Overview and demos

= Summary and QA

» TERRACOTTA

Problem overview

= One application per JVM is simple — but not enough

= Planned/Unplanned downtime and/or capacity stimuli
necessitate a scaled-out app-tier response

= Clustering state across JVM's is a non-trivial problem -
Lets look at the approaches.

"s" TERRACOTTA

Typical clustering strategies

s s ks s ks as s A

none Broadcast P2P: push

v v

s s |

N

s AS [A}}{AfSMSMA}1

1

Ej Buddy system

SoR | DB: pull

» TERRACOTTA

Typical clustering strategies: No silver bullet

OIS

Single painéof failure BrieddodasbBRneash

LRSI @[A}MA}}
i’j CBeddingyktitumes

SoBdBB bé&ttlpukck

» TERRACOTTA

All strategies suffers from use of Serialization

Why is Serialization a problem?

1. Breaks Java’s “pass-by-reference” semantics
= Domain model is perturbed
= Developers need to maintain references manually

2. GCan impact scalability
= (Can not keep track of actual changes
= Flattens and sends whole object graphs over the wire

3. Forces use of unnatural, verbose and error-prone coding
rules
For example, we need to:
= get () an instance, even if we already have a reference to it
= put () changes back
= implement some event callback mechanism (onMessage (msqg))
= invoke publish (msg) after write

These things are easy to forget a° TERRACOTTA

How does Serialization perturb your domain model?

Java has “pass-by-reference” semantics

// let’s create one father and two sons

Person adam = new Person(“Adam”, null);

Person cain = new Person (“Cain”, adam);

Person abel = new Person(“Abel”, adam);

adam

N

cain

abel

Object Identity Is preserved

» TERRACOTTA

How does Serialization perturb your domain model?

Serialization breaks regular object references

// but... if we serialize Cain and Abel

Person cain =

Person abel =

(Person) Serializer.clone(cain);

(Person) Serializer.clone (abel);

adam adam
cain abel

Object Identity Is NOT preserved

» TERRACOTTA

Why is Object Identity important?

= |f broken, then you have to:

— Maintain the relational maps between
objects yourself

— Layer some kind of primary-key mechanism
onto your domain objects

= This forces you to:
— Think like a relational database designer

— Rip the domain model apart and then
manually stitch it back together with keys

» TERRACOTTA

Why is Serialization-based clustering harder to scale?

= Field updates
— push whole object graph
— too much data is sent over wire

= Coarse-grained locks
— locking top-level object, regardless of scope of change
— premature lock contention

» TERRACOTTA

There has to be a hetter way!

» TERRACOTTA

We need Simplicity AND Scale-out

= Simplicity at runtime requires ...
— Preservation of Object Identity

— Preservation of the semantics of the Java
Memory Model (JMM)

= Scale-out requires...
— Fine-grained replication
— Runtime lock optimization for clustering
— Runtime caching for data access

» TERRACOTTA

|deally, Clustered Java would...

= Use natural Java semantics

= Turn a single-JVM application into a clustered
one, without:

1. Code changes
2. Semantic changes

= What we ultimately need is:

Clustering at the JVM level

» TERRACOTTA

The ldeal Solution

Preserves your domain model

Does not require usage of Java Serialization
Requires no application code changes
Reduces amount of replication overhead

B~ W o=

= Terracotta for Spring:

— Recognizes that clustering is a deployment/operational artifact
and delivers it as an infrastructure service that:
— Clusters the JVM and shares any arbitrary Spring bean and its
references by:
= Plugging into the Java Memory Model and automatically
detects what changed in the “clustered” domain model

= Only replicating what changed to where needed

» TERRACOTTA

Terracotta for Spring: Core Clustering Services

Scale-out ——— »

Spring App
are: =
rin .
Bzan ; ?; A

.

App Server App Server

App Server

are! =
rin, p. _
Bean s

Spring App

Terracotta Server
Clustering the JVM

Transparency

O

O

O

Runtime clustering for Spring
No API
Natural Spring Semantics

Sharing

O

Fine Grained / Field Level

= Only Where Resident
Coordination

O

O

O

O

Distributed Events
Distributed Wait Notify
Distributed Method Call
Fine Grained Locking

Memory Management

O

O

Dynamic Faulting and Flushing
Large Virtual Heaps

"s" TERRACOTIA

How it works

Terracotta injects Quality of Services at runtime

Developer focuses
solely on the
business logic,

/ using
POJOs,
Spring Beans,
EJBs etc.
L1/

72, Injects pre packaged

////// / // QoS into the application

Terracotta for Spring

» TERRACOTTA

The Spring Framework

= Life-cycle

— Defines and drives object life cycle (creates and destroys beans)
= Scope

— Singleton — scoped by application context

— Prototype — scoped by user (factory returns a new one every
time)

— Session (or custom) scoped beans — scoped by session or
custom code

= Assembly

— Well defined components with declarative dependencies
Allows us to naturally layer clustering services on top

» TERRACOTTA

» TERRACOTTA

JMX Demo: The Problem

= Spring’'s support for AOP and JMX allows to capture runtime
information from the application and make it available to the

management tools, but...

= In a clustered application you do not get an aggregated view of the
application state

= You have to manage or monitor each node individually or code for
a cluster-based view.

= This demo shows how Terracotta for Spring

—Shares data throughout the cluster
—Clustered state is made available through JMX with no code-

changes.
—Creates a single access point for monitoring and management

» TERRACOTTA

JMX Demo: Spring Configuration

= Two “counter” service beans (local and clustered)
= Two “history” interceptors (local and clustered)

<bean id="localCounter
class="demo.jmx.Counter"/>

<bean id="clusteredCounter"
class="demo.jmx.Counter"/>

<bean id="localHistory"
class="demo.jmx.HistoryQueue"/>

<bean id="clusteredHistory"
class="demo.jmx.HistoryQueue"/>

JMX

/ JConsole

Spring

Terracotta
JMX exporter for Spring

| N

Applicatilon \

localCounter clusteredCounter

localHistory clusteredHistory

‘'s” TERRACOTTA

JMX Demo: Terracotta Configuration

= Terracotta for Spring can declaratively cluster Spring beans with
zero code changes

= Using a simple XML configuration we declare which beans
should be clustered

= Clustered state is made available through JMX

Terracotta config Spring config

<spring>
<application name="tc—jmx">
<application-contexts>

<application-context> <bean id="localCounter"

<paths> class="demo. jmx.Counter"/>
<path>*/applicationContext.xml</path> _oan id= clusteredCounter”

</paths> /?ESS_ demo. jmx.Counter"/>

<beans> <bean id="localHistory"
<bean name="clusteredCounter"/> class="demo. jmx.HistoryQueue" />
<bean name="clusteredHistory" />(ream—o="clusteredHistor

</beans> class="demo. jmx.His oryQueue"/>

</application—-context>
</application—-contexts>
</application>
</spring>

» TERRACOTTA

JMX Demo: Conclusion

= Drops In and Out
—Zero code changes needed
—Declarative configuration

= Natural Clustering of Spring Beans
—Plain POJOs — no Java Serialization

= Clustered state is made available through JMX
— Single point of monitoring and management

» TERRACOTTA

Terracotta for Spring Features

r

.

Scale-out ——— »

App Server App Server App Server

Spring App ./.\o Spring App Spring App
are — A are — are —
rin rin rin _

Bzan _ Bzan . Bzan f;

J

Terracotta Server
Clustering the JVM

Runtime Clustering Service
= Drops In and Out
= Runtime Visibility of your

Spring application

Spring Framework Support:
= Clustered Singleton Beans
= Clustered Session Scoped

Beans (and custom scoped
beans)

WebFlow (including
continuations)

Availability of Clustered
State via JMX

Distributed Asynchronous
A@plication Context Events
(Cluster wide thread
coordination)

"s" TERRACOTIA

Drops In and Out

= No changes to existing code necessary
= Declarative configuration in Terracotta XML file
= Spring style configuration

<spring>
<jee-application name="MyWebApp'">
<application—-contexts>
<application—-context>
<paths>
<path>*/applicationContext .xml</path>
</paths>
<beans>
<bean name=“clusteredBean"/>
</beans>
</application-context>
</application-contexts>
</jee—application>
</spring>

» TERRACOTTA

Natural Clustering of Spring Beans

= Supported types are:
— Singleton beans (including interceptors)
— Session scoped beans
— Custom scoped beans

= Life-cycle semantics preserved

= Scope semantics preserved - within the same
“logical” ApplicationContext

» TERRACOTTA

Sharing JMX state

= Shared beans can be exposed through
Spring JMX

= Coherent view of the aggregate state
throughout the cluster

= One single point of management and
monitoring

» TERRACOTTA

Spring WebFlow

= Spring WebFlow stores conversational state in
session

= Terracotta for Spring clusters Http Session
transparently

= Just need a single line of config to cluster
WebFlow state (default or continuation-based)

» TERRACOTTA

= TERRACOTIA

Distributed Reliable Events

= Spring has a simple event/messaging facility in the
ApplicationContext

= Similar to the Observer pattern

1. Publish event to the context using
publishEvent (event)

2. All beans that implements the
ApplicationListener interface will receive the

event

= Turn Spring ApplicationContext events into
Distributed Reliable Events

» TERRACOTTA

Summary

Spring has increased momentum in the enterprise as an
application framework of choice

Scaling-Out Spring applications is more important than
ever

Simplified, Efficient Clustering at runtime:
— While preserving the natural semantics for Spring

Terracotta for Spring can address these issues today by
Clustering at the JVM level

» TERRACOTTA

Availability

Terracotta for Spring
— Available for download: TODAY
— Free production license for up to 2 nodes

Download Terracotta for Spring today at
— http://www.terracottatech.com/downloads.jsp
— Additional inquiries: Contact sales@terracottatech.com

Download Spring 1.x and 2.0 today at
— http://www.springframework.org

Spring Training and Education Services are available today at
— http://www.Interface21.com
— Additional inquiries: Contact info@interface21.com

» TERRACOTTA

For More Information

http://www.terracottatech.com/
http://blog.terracottatech.com/

= http://springframework.org/

http://jonasboner.com/
= http:/jroller.com/page/eu

"s" TERRACOTTA

» TERRACOTTA

Thank You

Www.terracottatech.com

» TERRACOTTA

