
Jonas Bonér - Eugene Kuleshov

Terracotta, Inc.

Transparently Clustered Spring

Agenda

� Overview of clustering strategies today

− Benefits and drawbacks

� The ideal solution

− The need for JVM-level clustering

� Introduction to Terracotta for Spring

− Overview and demos

� Summary and QA

Problem overview

� Clustering state across JVM’s is a non-trivial problem -
Lets look at the approaches.

� One application per JVM is simple – but not enough

� Planned/Unplanned downtime and/or capacity stimuli
necessitate a scaled-out app-tier response

Spring Spring SpringSpringSpring

Typical clustering strategies

AS AS AS AS

Broadcast P2P: push

AS AS AS AS

Buddy system

AS AS AS AS

SoR | DB: pull

LB

AS AS AS AS

none

Typical clustering strategies: No silver bullet

AS AS AS AS

Network bottleneck

AS AS AS AS

Cascading failures

AS AS AS AS

SoR |DB bottleneck

LB

AS AS AS AS

Single point of failure Broadcast P2P: push

Buddy system

SoR | DB: pull

none

All strategies suffers from use of Serialization

1. Breaks Java’s “pass-by-reference” semantics
� Domain model is perturbed

� Developers need to maintain references manually

2. Can impact scalability
� Can not keep track of actual changes

� Flattens and sends whole object graphs over the wire

3. Forces use of unnatural, verbose and error-prone coding
rules
For example, we need to:

� get() an instance, even if we already have a reference to it

� put() changes back

� implement some event callback mechanism (onMessage(msg))

� invoke publish(msg) after write

These things are easy to forget

Why is Serialization a problem?

How does Serialization perturb your domain model?

// let’s create one father and two sons

Person adam = new Person(“Adam”, null);

Person cain = new Person(“Cain”, adam);

Person abel = new Person(“Abel”, adam);

cain abel

adam

Object Identity Is preserved

Java has “pass-by-reference” semantics

How does Serialization perturb your domain model?

// but... if we serialize Cain and Abel

Person _cain = (Person)Serializer.clone(cain);

Person _abel = (Person)Serializer.clone(abel);

cain abel

adam adam

Object Identity Is NOT preserved

Serialization breaks regular object references

� If broken, then you have to:

− Maintain the relational maps between

objects yourself

− Layer some kind of primary-key mechanism

onto your domain objects

� This forces you to:

− Think like a relational database designer

− Rip the domain model apart and then

manually stitch it back together with keys

Why is Object Identity important?

Why is Serialization-based clustering harder to scale?

� Field updates

⇒ push whole object graph

⇒ too much data is sent over wire

� Coarse-grained locks

⇒ locking top-level object, regardless of scope of change

⇒ premature lock contention

There has to be a better way!

We need Simplicity AND Scale-out

� Simplicity at runtime requires …

− Preservation of Object Identity

− Preservation of the semantics of the Java

Memory Model (JMM)

� Scale-out requires…

− Fine-grained replication

− Runtime lock optimization for clustering

− Runtime caching for data access

Ideally, Clustered Java would…

� Use natural Java semantics

� Turn a single-JVM application into a clustered
one, without:

1. Code changes

2. Semantic changes

� What we ultimately need is:

Clustering at the JVM level

The Ideal Solution

1. Preserves your domain model

2. Does not require usage of Java Serialization

3. Requires no application code changes

4. Reduces amount of replication overhead

� Terracotta for Spring:
− Recognizes that clustering is a deployment/operational artifact

and delivers it as an infrastructure service that:

− Clusters the JVM and shares any arbitrary Spring bean and its
references by:

� Plugging into the Java Memory Model and automatically
detects what changed in the “clustered” domain model

� Only replicating what changed to where needed

Terracotta for Spring: Core Clustering Services

� Transparency
� Runtime clustering for Spring

� No API

� Natural Spring Semantics

� Sharing
� Fine Grained / Field Level

� Only Where Resident

� Coordination
� Distributed Events

� Distributed Wait Notify

� Distributed Method Call

� Fine Grained Locking

� Memory Management
� Dynamic Faulting and Flushing

� Large Virtual Heaps

Scale-out

App Server

Spring App

JVM TC Libraries

Shared
Spring

Bean

Terracotta Server
Clustering the JVM

Terracotta Server
Clustering the JVM

App Server

Spring App

JVM TC Libraries

Shared
Spring

Bean

App Server

Spring App

JVM TC Libraries

Shared
Spring

Bean

MonitoringMonitoringMonitoringMonitoringMessagingMessagingMessagingMessagingClusteringClusteringClusteringClustering
Injects pre packaged
QoS into the application

Terracotta for Spring

Developer focuses
solely on the

business logic,
using

POJOs,
Spring Beans,

EJBs etc.

Terracotta injects Quality of Services at runtime

How it works

The Spring Framework

� Life-cycle

− Defines and drives object life cycle (creates and destroys beans)

� Scope

− Singleton – scoped by application context

− Prototype – scoped by user (factory returns a new one every
time)

− Session (or custom) scoped beans – scoped by session or
custom code

� Assembly

− Well defined components with declarative dependencies

� Allows us to naturally layer clustering services on top

Clustering JMX state in a Web application

DEMO

JMX Demo: The Problem

� Spring’s support for AOP and JMX allows to capture runtime
information from the application and make it available to the
management tools, but…

� In a clustered application you do not get an aggregated view of the
application state

� You have to manage or monitor each node individually or code for
a cluster-based view.

� This demo shows how Terracotta for Spring

−Shares data throughout the cluster

−Clustered state is made available through JMX with no code-
changes.

−Creates a single access point for monitoring and management

Spring

JMX Demo: Spring Configuration

<bean id="localCounter
class="demo.jmx.Counter"/>

<bean id="clusteredCounter"
class="demo.jmx.Counter"/>

<bean id="localHistory"
class="demo.jmx.HistoryQueue"/>

<bean id="clusteredHistory"
class="demo.jmx.HistoryQueue"/>

Application

JMX / JConsole

localCounter

Terracotta
for Spring

localHistory

clusteredCounter

clusteredHistory

JMX exporter

� Two “counter” service beans (local and clustered)

� Two “history” interceptors (local and clustered)

JMX Demo: Terracotta Configuration

� Terracotta for Spring can declaratively cluster Spring beans with
zero code changes

� Using a simple XML configuration we declare which beans
should be clustered

� Clustered state is made available through JMX

<spring>

<application name="tc-jmx">
<application-contexts>

<application-context>

<paths>

<path>*/applicationContext.xml</path>
</paths>

<beans>

<bean name="clusteredCounter"/>
<bean name="clusteredHistory"/>

</beans>

</application-context>

</application-contexts>

</application>

</spring>

Terracotta config Spring config

<bean id="localCounter"
class="demo.jmx.Counter"/>

<bean id="clusteredCounter"
class="demo.jmx.Counter"/>

<bean id="localHistory"
class="demo.jmx.HistoryQueue"/>

<bean id="clusteredHistory"
class="demo.jmx.HistoryQueue"/>

JMX Demo: Conclusion

� Drops In and Out

−Zero code changes needed

−Declarative configuration

� Natural Clustering of Spring Beans

−Plain POJOs – no Java Serialization

� Clustered state is made available through JMX

− Single point of monitoring and management

Terracotta for Spring Features

� Runtime Clustering Service
� Drops In and Out

� Runtime Visibility of your
Spring application

� Spring Framework Support:
� Clustered Singleton Beans

� Clustered Session Scoped
Beans (and custom scoped
beans)

� WebFlow (including
continuations)

� Availability of Clustered
State via JMX

� Distributed Asynchronous
Application Context Events
(Cluster wide thread
coordination)

Scale-out

App Server

Spring App

JVM TC Libraries

Shared
Spring

Bean

Terracotta Server
Clustering the JVM

Terracotta Server
Clustering the JVM

App Server

Spring App

JVM TC Libraries

Shared
Spring

Bean

App Server

Spring App

JVM TC Libraries

Shared
Spring

Bean

Drops In and Out

� No changes to existing code necessary

� Declarative configuration in Terracotta XML file

� Spring style configuration

<spring>
<jee-application name=“MyWebApp">
<application-contexts>
<application-context>
<paths>
<path>*/applicationContext.xml</path>

</paths>
<beans>
<bean name=“clusteredBean"/>

</beans>
</application-context>

</application-contexts>
</jee-application>

</spring>

Natural Clustering of Spring Beans

� Supported types are:

− Singleton beans (including interceptors)

− Session scoped beans

− Custom scoped beans

� Life-cycle semantics preserved

� Scope semantics preserved - within the same
“logical” ApplicationContext

� Shared beans can be exposed through

Spring JMX

� Coherent view of the aggregate state

throughout the cluster

� One single point of management and

monitoring

Sharing JMX state

Spring WebFlow

� Spring WebFlow stores conversational state in

session

� Terracotta for Spring clusters Http Session

transparently

� Just need a single line of config to cluster

WebFlow state (default or continuation-based)

Clustering Spring WebFlow’s

continuations (conversational state)

DEMO

Distributed Reliable Events

� Spring has a simple event/messaging facility in the
ApplicationContext

� Similar to the Observer pattern

1.Publish event to the context using
publishEvent(event)

2.All beans that implements the
ApplicationListener interface will receive the
event

� Turn Spring ApplicationContext events into
Distributed Reliable Events

Summary
� Spring has increased momentum in the enterprise as an

application framework of choice

� Scaling-Out Spring applications is more important than
ever

� Simplified, Efficient Clustering at runtime:

− While preserving the natural semantics for Spring

� Terracotta for Spring can address these issues today by
Clustering at the JVM level

Availability

� Terracotta for Spring

− Available for download: TODAY

− Free production license for up to 2 nodes

� Download Terracotta for Spring today at

− http://www.terracottatech.com/downloads.jsp

− Additional inquiries: Contact sales@terracottatech.com

� Download Spring 1.x and 2.0 today at

− http://www.springframework.org

� Spring Training and Education Services are available today at

− http://www.Interface21.com

− Additional inquiries: Contact info@interface21.com

For More Information

� http://www.terracottatech.com/

� http://blog.terracottatech.com/

� http://springframework.org/

� http://jonasboner.com/

� http://jroller.com/page/eu

Questions?

Thank You

www.terracottatech.com

