Emerging Technologies for the Enterprise

j} OPh'adelpma, Pennsylvania April 8-9, 2010

Airplanes to Application
Development

/

JonKern@comecast.net / Architect & Agile Coach

ETE 2010 JonKernPA

—_—



Overview

A A look at B777 aircraft development project
3 Parallels to software development

A What we can learn from product engineering?

ETE 2010 JonKernPA

—



Requirements & Stakeholders

Jan 90 - Early involvement with
8 major airlines
Mar 90 - Initial requirements

X-section = B747

325 passengers
Fly-by-wire controls
“Glass” cockpit

Flexible interior

10% better seat-mile cost

Oct 90 - United Airlines

becomes launch “Beta”
Customer

m

m
.
*
.
.
.
.

m

m

UA extends the scenarios

+ Requirements change

ETE 2010 JonKernPA



Lessons:

Create a coalition of stakeholders
Gather input from key users
Understand the business drivers
Adapt to changing requirements

I R

ETE 2010

—

JonKernPA



Development Team

A Team Makeup

¢ 240 Design teams

+ Up to 40 members each
3 Assigned individual components
Pieces of the integrated whole
Clear picture of where it fits in
Clear feedback loops

Prominent time-based
integration checkpoints

3 Jan 93—Formally dubbed “B777”
A UA engineers join other airline
“customer” teams

*
*
*
*

ETE 2010 JonKernPA

—_—



Lessons:

Divide and conquer
Maintain big picture, but allow creativity

Include customers on development team
Develop clear communication

Let the computer models assist in that communication
Have integration strategy to ensure no team strays (too far)

[N I I [ R

ETE 2010 JonKernPA

—



Trade-offs to Find “"Sweet Spot”

Weight versus Cost
Teams allocated goals at outset
Difficult and imprecise
All systems interdependent
How best to allow change?

¢ Centralized authority?

¢ Decentralization is best!
A  Decision support rule

¢ 1Ib savings worth $300

A 5000 engineers able to

make decisions

N R [

ETE 2010 —: JonKernPA



Lessons:

a

Team empowered to be creative and responsive
Decision still controlled within business parameters
No decision-making delays due to hierarchical sign-off
ceremonies for every little request

Continuous build system enables gathering measurements by
which goals are evaluated

Regarding “cost metrics” for development, this 1s
challenging for most software projects

ETE 2010 JonKernPA

—_—



Test the Process

A Risk mitigation is a key to
development. For example:
A Test the modeling process
¢ Risk: CAD methodology —
will it work?
o Built physical mock-up
o Used all design techniques
o Evaluated the end-product
A Result was an astounding
success!
A Canceled all other component
tests of the process

ETE 2010 1 JonKernPA

———



Lessons:

a

4

Test the process

Prove you can deliver working results

Gain faith in the automated “transforms” from the design
“meta data” and the end results of a “build”

Work in small batches

Enable & consume rapid feedback

Change the plan as needed based on findings

ETE 2010 JonKernPA

—



100% Computer-Aided Design

A First commercial aircraft example
@ 3D CAD drawings for all design
components
3 Virtual 777 could be
¢ Assembled
+ Simulated
¢ Interference checked
A Reduced costly rework
A Provided early feedback

ETE 2010 = JonKernPA



Lessons:

A Economics of past development efforts made it clear that

modeling/testing was valuable
¢ “Gambled” and built CAD tool as they went along
o Up-front effort was expected to yield ultimate savings in time
and money, and improved customer satisfaction
3 Build “generators” from models to...
A The Virtual 777 — CI
¢ Continuous builds
¢ Integration tests
A Learn from the tests

3 Do you have any costly processes that could be mitigated?

ETE 2010 JonKernPA

—_—



Production/QA Schedule

A Jan 93 - production begins
(3yrs after requirements!)

A  Apr 94 - prototype rolled out

A Jun 94 - first flight

A  Apr 95 - airworthiness
certifications received

A May 95 - first delivery

A Jun 95 - first commercial flight

ETE 2010 = JonKernPA



The Parallels to Software Dev

A We can learn from the “Triple 7”

o Committed clients!

o Architecture is key
» 240 Component teams

¢ Empower teams
» Use “cost” decision rules

¢ Frequent results & feedback

through continuous integration

» Reduced queue wait times

+ Enable change at low levels
» Reduced cost of delay

¢ Wise use of process & tools

» Thin slice through the entire
process proven out

o Trust but verify

ETE 2010 1 JonKernPA

———



The Business of Software

1 Generally, we build software for
a purpose!
1 Typically we hope to make a
profit/positive impact
A Purposes can take many forms:
¢ Provide a commercial product
o Software as a service
+ Support a business process

+ Create a marketing edge
o All of the above

ETE 2010

"Ny
oy
n"’ s

/v;‘ rfstS/y z
g ~ R =

50 I‘v“\/ O
il W

e

T

R

N

JonKernPA



What About Your “"Factory?”

A Do you...

Involve the client?

Have clear business purpose and goals?

Have clear and effective architecture?

Encourage a high-powered team?

Have continuous integration tests?

Test the process?

Deliver frequently?

Embrace change?

A Can you tie development action to “cost/benefits”?

3 If your software were visible/physical, would it be pretty?

® & 6 6 6 O 0 o

3 FWIW: If you are like me, plenty of room to always improve!

ETE 2010 JonKernPA

—_—



Summary

@ The engineering discipline has a lot to teach our software
community

3 Finding the “sweet spot” requires understanding the
dynamics of your specific product’s economics

3 Look around at other professions for patterns and processes
that might help you succeed

3 Everyone has the responsibility to be a disciplined
professional — including the client

A To move our profession closer to engineering, we must
emerge from the dark recesses of the “cubicle”

@ FWIW: These are the sort of techniques I have used successfully

ETE 2010 JonKernPA

—_—



Questions?

A Feel free to ask any questions
@ Email: jonkern@comcast.net

3 Website/Blog: http://technicaldebt.wetpaint.com

ETE 2010 —: JonKernPA

—_—



