
REST and WS-*:
Myths, Facts and Lies

Paul Fremantle
CTO, Co-founder, WSO2
paul@wso2.com

About me
 Paul Fremantle

17 years experience in Software and Middleware
CTO and Co-founder of WSO2 – the open source

SOA middleware company
Member of the Apache Software Foundation
Chair, Apache Synapse PMC
Co-chair of the WSRX Technical Committee at

OASIS
Previously a Senior Technical Staff Member at

IBM

What is WS-*

 The set of specifications proposed
through
W3C, OASIS, WS-I

 SOAP, WSDL, WS-Security, etc
 Supported by IBM, Microsoft, BEA, Tibco,

etc
 Designed as a technical implementation

of Service Oriented Architecture

A Sample SOAP Message (cont)

<soap:Envelope xmlns:soap="http://
schemas.xmlsoap.org/soap/envelope/">

 <soap:Header/>
 <soap:Body>
 <getProductDetails xmlns="http://
warehouse.example.com/ws">

 <productID>827635</productID> </
getProductDetails>

 </soap:Body>
</soap:Envelope>

Myth #1

You need WS-* to implement
a Web Service

Fact #1
In many cases HTTP is good enough
 If you have simple requirements, then

SOAP is overkill
 If you just need point-to-point encryption

and username/password authentication then
XML/HTTP works fine

 If you have <soap:Header/> with nothing in
it, then SOAP isn’t getting you any benefit

What is REST?

 REpresentational State Transfer
Coined by Roy Fielding in his PhD thesis
 Identified as the “true architecture of the

web”
 The basic concept is that everything is a

“Resource”
The HTTP verbs allow transfer of a specific

representation (e.g.HTML, XML) of the
resource
 POST, GET, PUT, DELETE
 Create, Read, Update, Delete

Myth #2

REST is simple

Digging into REST some more
 Everything is a Resource, identified by a URI
 Everything has a Uniform Interface (PUT, POST,

GET, DELETE)
 The representation you get is based on

Content-Type
 e.g. text/xml, image/jpeg

 Interactions are stateless
 Links are key!

 “Hypermedia as the engine of application state”

An example

http://company.com/crm/customer/123456

POST /crm/customer
“Create a new customer,
return URI as Location Header”

PUT /crm/customer/123456
Content-Type: application/xml
“Update customer with XML”

GET /crm/customer/123456
Accept: application/xml
“Give me the XML for this customer”

DELETE /crm/customer/123456
“Remove this customer from active
list and archive”

http://company.com/crm/customer/123456
http://company.com/crm/customer/123456

FACT #2 REST is full of subtleties
 Method Safety

 GET, HEAD, OPTIONS, TRACE will not modify
anything

 Idempotency
 PUT, DELETE, GET, HEAD can be repeated and the

side-effects remain the same
 Caching

 Correct use of Last-Modified and ETag headers
 Content-negotiation

 In theory, Accept headers allow this, in practice, it
doesn’t work well

Myth #3

REST must be the most scalable,
powerful and best model because
the whole Web is REST

Fact #4 –
most Web Applications are not REST

 You can’t bookmark them
 Most application flow is completely based

on session scope and form parameters
 Many proxies block PUT requests
 POST is used as “get out of jail free”
 Hardly anyone implements ETags and

Last-modified properly
not even Google Docs!

Sub-myth
 No-one actually uses SOAP for real stuff

eBay does 50,000,000 SOAP transactions a day (on the
web with PowerSellers)

Hyatt does hotel bookings via SOAP over the web with
partners

Windows Live links MSN Messenger to mobile gateways
using SOAP and SecureConversation

UK website www.thetrainline.com gives partners train
information via the web

http://www.thetrainline.com/
http://www.thetrainline.com/

FACT #5

Well-designed REST
applications are very
powerful

The benefits of a well-designed REST app

 Bookmarkability
 Each URI really points to a unique entity
 Every entity can be referenced

 Multiple representations are powerful
 Allowing one view of a resource for users and one for

systems makes application development simpler and
more logical

 Having well defined links
 Does improve the semantic richness of an application
 By comparison WSDL is very flat and doesn’t show

the links between operations and services

Myth #4

WS-* is far too complex

Comparison: A few REST Specifications
 HTTP 1.0/1.1, PEP, HTML, XHTML
 Media Types, MIME, S/MIME
 JSR 311 – JARWS
 POST Once Exactly
 SSL/TLS
 URL, URI, URN, IRI
 WebDav, DeltaV
 XForms, XML, XML Schema, XPath, XSLT, CSS
 JSON
 WebAPI, XMLHttpRequest, AJAX, Comet
 RDDL, Microformats, GRDDL, etc…
 Atom, Atom Publishing Protocol, GData, etc…
 RFCs 1945, 2068, 2069, 2109, 2145, 2169, 2227, 2295, 2296, 2518,

2616, 2617, 2774, 2817, 2818, 2935, 2936, 2964, 2965, 3143, 3205,
3229, 3230, 3310, 4130, 4169, 4229, 4236, 4387, 4559, 4918…

Fact #6

 WS-* standards are quite complex
Still not enough “out-of-the-box”

interoperability despite several years effort
 The WS-* standards offered too many

choices
WS-I has done a reasonable job of cutting

down the choices

Fact #6a:

 “Pay as you go”
 For example,

No need to understand WS-ReliableMessaging
until you need assured delivery

Myth #5

You can use REST to
implement any service

Fact #7
You need WS-* for interoperable security
and reliability

 There is no commonly accepted REST model
for:
 Message Signing / Non-repudiation
 Reliable Messaging

 There are some proposals
 Mainly require modifying business logic and coding

directly
 Not implemented by any middleware solutions
 WS-Security, SecureConversation and WS-RM are

widely implemented and proven to interoperate

Fact #8:
A standard WS-* profile is emerging
 SOAP

 A transport agnostic messaging model
 WSDL and WS-Policy description

 A framework for describing services
 WS-Addressing

 A routing and addressing model
 MTOM

 How to efficiently include binary data
 WS-Security/SecureConversation

 Efficiently add encryption, signatures and authentication
 WS-ReliableMessaging

 Assured delivery of messages
WS-I Reliable Secure Profile

http://www.ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure

http://www.ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure

Myth #6

SOAP is just RPC spelt in XML

Fact #9:
SOAP is a messaging specification

“SOAP is fundamentally a stateless, one-way
message exchange paradigm, but
applications can create more complex
interaction patterns by combining such one-
way exchanges”

 SOAP 1.2 Primer, W3C

Fact #10: WS-* fully supports
Asynchronous Messaging

 WS-Addressing specification defines the
concept of a ReplyTo

 Allows SOAP interactions to become long-
running and more loosely coupled

 Asynchronous behaviour is an important
factor in scalability and resilience

Sub-myth #6 –
“You need WSDL to use SOAP”

 WSDL makes it easier for programmers to use
remote services, but its not “normative”

 SOAP Web Services are “Duck Typed”
 If you don’t like the WSDL they provide, use another

equivalent one!

 WSDL is complex, but its also one of the most
useful specifications when used wisely

Sub-Myth #6 (part 2)
 The problems of WSDL go away with REST
 The biggest problem is XML Schema binding

 Doesn’t go away with REST
 Although RELAX-NG offers a better option, Schema is

still king

Another option to minimize binding issues

 Use XPath

invokeOperation(xml) {
 price = xml.xpath(//order/price);
 quantity = xml.xpath(//order/

@quantity);
 …
}

Myth #7

You don’t need a description
language – content
negotiation is enough

Fact #11:
Content-type isn’t enough

 Firstly, most XML types come as “application/
xml”

 Content-type negotiation is not a successful
aspect of REST

 No way of describing the linkages
 “Hypermedia as the engine of application state”

 Very hard to replace a REST system because
there is no well-defined interface specification

 Proposals to improve REST description:
 WADL
 WSDL 2.0 can be used to describe any HTTP

application

WADL

<resources>

 <resource uri="http://.../NewsSearchService/V1/newsSearch">

 <operationRef ref="tns:NewsSearch"/>

 </resource>

</resources>

<operation name="NewsSearch" method="get">

 <request>

 <parameter name="appid" type="xsd:string" required="true"/>

 </request>

 <response>

 <representation mediaType="text/xml" element="yn:ResultSet">

 <parameter name="totalResults"

Errors in REST

Hypermedia as the Engine of Application State

 The links are what matters
 WADL provides a way of identifying links
 But “browseability” is the best model

Myth #8

HTTP is the only protocol you
need

Lots of protocols

 Enterprise:
JMS, SMTP, TCP, IIOP, MQSeries, etc

 Cool:
Jabber/XMPP, YahooIM, SIP, etc

Fact #12

WS-* layers well on top of lots of protocols
For example, the Danish Government OIO project is

using Secure Reliable SOAP over SMTP

Fact #13
Even for simple resource-oriented
applications HTTP isn’t enough

 Two initiatives prove it:
WebDAV, DeltaV

 Extending HTTP to be used as a real repository for
documents, code, etc

Atom Publishing Protocol
 Simple way of publishing entries to a blog server

 In both cases, you need to extend the
core model to support even simple
publishing capabilites effectively

Sub-myth #8a

 REST is an architectural style that can be
used with any protocol

Fact #14

HTTP is the only example

Myth #9

REST naturally allows caching
and is therefore more
scalable

Fact #15
Most applications can’t be cached

 HTTP was designed with Caching in mind
GET If modified, ETags

 BUT
As soon as you secure an HTTP connection

with SSL/TLS then there is no caching
You can have caching OR security but not

both

The big lie (#1)

Distributed computing is easy
with {SOAP, REST, …}

Fact #16
Distributed computing is hard
 Whichever approach you take you need to

consider complex issues
Security
Reliability, latency, failure cases
Caching
Encoding
Description and discoverability
Mobility and re-implementability

My recommendations

 Stick to well known profiles
.NET, RASP, RSP, etc
AtomPub

 Use as much of the Web Architecture
whether or not you are using WS or REST
e.g. RDDL
Make your URIs real

 Use what works

RDDL

<a href="http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-schema-200702.xsd“
 rddl:nature="http://www.w3.org/2001/XMLSchema"
 rddl:purpose="http://www.rddl.org/purposes#schema-validation">
 wsrm-1.1-schema-200702.xsd

Hype Cycle
REST

WS-*

Me

Resources
 Roy Fielding’s thesis

 http://roy.gbiv.com/pubs/dissertation/top.htm
 InnoQ WS Poster

 http://www.innoq.com/resources/ws-standards-poster/
 SOAP Primer

 http://www.w3.org/TR/soap12-part0
 Atom Publishing Protocol

 http://bitworking.org/projects/atom/draft-ietf-atompub-
protocol-17.html

 RESTful Web Services, book by Leonard Richardson and Sam Ruby
 http://www.amazon.com/Restful-Web-Services-Leonard-Richardson/

dp/0596529260
 WS-I Reliable Secure Profile

 http://www.ws-i.org/deliverables/workinggroup.aspx?
wg=reliablesecure

 My blog
 http://pzf.fremantle.org

http://roy.gbiv.com/pubs/dissertation/top.htm
http://roy.gbiv.com/pubs/dissertation/top.htm
http://www.innoq.com/resources/ws-standards-poster/
http://www.innoq.com/resources/ws-standards-poster/
http://www.w3.org/TR/soap12-part0
http://www.w3.org/TR/soap12-part0
http://bitworking.org/projects/atom/draft-ietf-atompub-protocol-17.html
http://bitworking.org/projects/atom/draft-ietf-atompub-protocol-17.html
http://bitworking.org/projects/atom/draft-ietf-atompub-protocol-17.html
http://bitworking.org/projects/atom/draft-ietf-atompub-protocol-17.html
http://www.amazon.com/Restful-Web-Services-Leonard-Richardson/dp/0596529260
http://www.amazon.com/Restful-Web-Services-Leonard-Richardson/dp/0596529260
http://www.amazon.com/Restful-Web-Services-Leonard-Richardson/dp/0596529260
http://www.amazon.com/Restful-Web-Services-Leonard-Richardson/dp/0596529260
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://pzf.fremantle.org/
http://pzf.fremantle.org/

Thanks for listening!

