
REST and WS-*:
Myths, Facts and Lies

Paul Fremantle
CTO, Co-founder, WSO2
paul@wso2.com

About me
 Paul Fremantle

17 years experience in Software and Middleware
CTO and Co-founder of WSO2 – the open source

SOA middleware company
Member of the Apache Software Foundation
Chair, Apache Synapse PMC
Co-chair of the WSRX Technical Committee at

OASIS
Previously a Senior Technical Staff Member at

IBM

What is WS-*

 The set of specifications proposed
through
W3C, OASIS, WS-I

 SOAP, WSDL, WS-Security, etc
 Supported by IBM, Microsoft, BEA, Tibco,

etc
 Designed as a technical implementation

of Service Oriented Architecture

A Sample SOAP Message (cont)

<soap:Envelope xmlns:soap="http://
schemas.xmlsoap.org/soap/envelope/">

 <soap:Header/>
 <soap:Body>
 <getProductDetails xmlns="http://
warehouse.example.com/ws">

 <productID>827635</productID> </
getProductDetails>

 </soap:Body>
</soap:Envelope>

Myth #1

You need WS-* to implement
a Web Service

Fact #1
In many cases HTTP is good enough
 If you have simple requirements, then

SOAP is overkill
 If you just need point-to-point encryption

and username/password authentication then
XML/HTTP works fine

 If you have <soap:Header/> with nothing in
it, then SOAP isn’t getting you any benefit

What is REST?

 REpresentational State Transfer
Coined by Roy Fielding in his PhD thesis
 Identified as the “true architecture of the

web”
 The basic concept is that everything is a

“Resource”
The HTTP verbs allow transfer of a specific

representation (e.g.HTML, XML) of the
resource
 POST, GET, PUT, DELETE
 Create, Read, Update, Delete

Myth #2

REST is simple

Digging into REST some more
 Everything is a Resource, identified by a URI
 Everything has a Uniform Interface (PUT, POST,

GET, DELETE)
 The representation you get is based on

Content-Type
 e.g. text/xml, image/jpeg

 Interactions are stateless
 Links are key!

 “Hypermedia as the engine of application state”

An example

http://company.com/crm/customer/123456

POST /crm/customer
“Create a new customer,
return URI as Location Header”

PUT /crm/customer/123456
Content-Type: application/xml
“Update customer with XML”

GET /crm/customer/123456
Accept: application/xml
“Give me the XML for this customer”

DELETE /crm/customer/123456
“Remove this customer from active
list and archive”

http://company.com/crm/customer/123456
http://company.com/crm/customer/123456

FACT #2 REST is full of subtleties
 Method Safety

 GET, HEAD, OPTIONS, TRACE will not modify
anything

 Idempotency
 PUT, DELETE, GET, HEAD can be repeated and the

side-effects remain the same
 Caching

 Correct use of Last-Modified and ETag headers
 Content-negotiation

 In theory, Accept headers allow this, in practice, it
doesn’t work well

Myth #3

REST must be the most scalable,
powerful and best model because
the whole Web is REST

Fact #4 –
most Web Applications are not REST

 You can’t bookmark them
 Most application flow is completely based

on session scope and form parameters
 Many proxies block PUT requests
 POST is used as “get out of jail free”
 Hardly anyone implements ETags and

Last-modified properly
not even Google Docs!

Sub-myth
 No-one actually uses SOAP for real stuff

eBay does 50,000,000 SOAP transactions a day (on the
web with PowerSellers)

Hyatt does hotel bookings via SOAP over the web with
partners

Windows Live links MSN Messenger to mobile gateways
using SOAP and SecureConversation

UK website www.thetrainline.com gives partners train
information via the web

http://www.thetrainline.com/
http://www.thetrainline.com/

FACT #5

Well-designed REST
applications are very
powerful

The benefits of a well-designed REST app

 Bookmarkability
 Each URI really points to a unique entity
 Every entity can be referenced

 Multiple representations are powerful
 Allowing one view of a resource for users and one for

systems makes application development simpler and
more logical

 Having well defined links
 Does improve the semantic richness of an application
 By comparison WSDL is very flat and doesn’t show

the links between operations and services

Myth #4

WS-* is far too complex

Comparison: A few REST Specifications
 HTTP 1.0/1.1, PEP, HTML, XHTML
 Media Types, MIME, S/MIME
 JSR 311 – JARWS
 POST Once Exactly
 SSL/TLS
 URL, URI, URN, IRI
 WebDav, DeltaV
 XForms, XML, XML Schema, XPath, XSLT, CSS
 JSON
 WebAPI, XMLHttpRequest, AJAX, Comet
 RDDL, Microformats, GRDDL, etc…
 Atom, Atom Publishing Protocol, GData, etc…
 RFCs 1945, 2068, 2069, 2109, 2145, 2169, 2227, 2295, 2296, 2518,

2616, 2617, 2774, 2817, 2818, 2935, 2936, 2964, 2965, 3143, 3205,
3229, 3230, 3310, 4130, 4169, 4229, 4236, 4387, 4559, 4918…

Fact #6

 WS-* standards are quite complex
Still not enough “out-of-the-box”

interoperability despite several years effort
 The WS-* standards offered too many

choices
WS-I has done a reasonable job of cutting

down the choices

Fact #6a:

 “Pay as you go”
 For example,

No need to understand WS-ReliableMessaging
until you need assured delivery

Myth #5

You can use REST to
implement any service

Fact #7
You need WS-* for interoperable security
and reliability

 There is no commonly accepted REST model
for:
 Message Signing / Non-repudiation
 Reliable Messaging

 There are some proposals
 Mainly require modifying business logic and coding

directly
 Not implemented by any middleware solutions
 WS-Security, SecureConversation and WS-RM are

widely implemented and proven to interoperate

Fact #8:
A standard WS-* profile is emerging
 SOAP

 A transport agnostic messaging model
 WSDL and WS-Policy description

 A framework for describing services
 WS-Addressing

 A routing and addressing model
 MTOM

 How to efficiently include binary data
 WS-Security/SecureConversation

 Efficiently add encryption, signatures and authentication
 WS-ReliableMessaging

 Assured delivery of messages
WS-I Reliable Secure Profile

http://www.ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure

http://www.ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure

Myth #6

SOAP is just RPC spelt in XML

Fact #9:
SOAP is a messaging specification

“SOAP is fundamentally a stateless, one-way
message exchange paradigm, but
applications can create more complex
interaction patterns by combining such one-
way exchanges”

 SOAP 1.2 Primer, W3C

Fact #10: WS-* fully supports
Asynchronous Messaging

 WS-Addressing specification defines the
concept of a ReplyTo

 Allows SOAP interactions to become long-
running and more loosely coupled

 Asynchronous behaviour is an important
factor in scalability and resilience

Sub-myth #6 –
“You need WSDL to use SOAP”

 WSDL makes it easier for programmers to use
remote services, but its not “normative”

 SOAP Web Services are “Duck Typed”
 If you don’t like the WSDL they provide, use another

equivalent one!

 WSDL is complex, but its also one of the most
useful specifications when used wisely

Sub-Myth #6 (part 2)
 The problems of WSDL go away with REST
 The biggest problem is XML Schema binding

 Doesn’t go away with REST
 Although RELAX-NG offers a better option, Schema is

still king

Another option to minimize binding issues

 Use XPath

invokeOperation(xml) {
 price = xml.xpath(//order/price);
 quantity = xml.xpath(//order/

@quantity);
 …
}

Myth #7

You don’t need a description
language – content
negotiation is enough

Fact #11:
Content-type isn’t enough

 Firstly, most XML types come as “application/
xml”

 Content-type negotiation is not a successful
aspect of REST

 No way of describing the linkages
 “Hypermedia as the engine of application state”

 Very hard to replace a REST system because
there is no well-defined interface specification

 Proposals to improve REST description:
 WADL
 WSDL 2.0 can be used to describe any HTTP

application

WADL

<resources>

 <resource uri="http://.../NewsSearchService/V1/newsSearch">

 <operationRef ref="tns:NewsSearch"/>

 </resource>

</resources>

<operation name="NewsSearch" method="get">

 <request>

 <parameter name="appid" type="xsd:string" required="true"/>

 </request>

 <response>

 <representation mediaType="text/xml" element="yn:ResultSet">

 <parameter name="totalResults"

Errors in REST

Hypermedia as the Engine of Application State

 The links are what matters
 WADL provides a way of identifying links
 But “browseability” is the best model

Myth #8

HTTP is the only protocol you
need

Lots of protocols

 Enterprise:
JMS, SMTP, TCP, IIOP, MQSeries, etc

 Cool:
Jabber/XMPP, YahooIM, SIP, etc

Fact #12

WS-* layers well on top of lots of protocols
For example, the Danish Government OIO project is

using Secure Reliable SOAP over SMTP

Fact #13
Even for simple resource-oriented
applications HTTP isn’t enough

 Two initiatives prove it:
WebDAV, DeltaV

 Extending HTTP to be used as a real repository for
documents, code, etc

Atom Publishing Protocol
 Simple way of publishing entries to a blog server

 In both cases, you need to extend the
core model to support even simple
publishing capabilites effectively

Sub-myth #8a

 REST is an architectural style that can be
used with any protocol

Fact #14

HTTP is the only example

Myth #9

REST naturally allows caching
and is therefore more
scalable

Fact #15
Most applications can’t be cached

 HTTP was designed with Caching in mind
GET If modified, ETags

 BUT
As soon as you secure an HTTP connection

with SSL/TLS then there is no caching
You can have caching OR security but not

both

The big lie (#1)

Distributed computing is easy
with {SOAP, REST, …}

Fact #16
Distributed computing is hard
 Whichever approach you take you need to

consider complex issues
Security
Reliability, latency, failure cases
Caching
Encoding
Description and discoverability
Mobility and re-implementability

My recommendations

 Stick to well known profiles
.NET, RASP, RSP, etc
AtomPub

 Use as much of the Web Architecture
whether or not you are using WS or REST
e.g. RDDL
Make your URIs real

 Use what works

RDDL

<a href="http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-schema-200702.xsd“
 rddl:nature="http://www.w3.org/2001/XMLSchema"
 rddl:purpose="http://www.rddl.org/purposes#schema-validation">
 wsrm-1.1-schema-200702.xsd

Hype Cycle
REST

WS-*

Me

Resources
 Roy Fielding’s thesis

 http://roy.gbiv.com/pubs/dissertation/top.htm
 InnoQ WS Poster

 http://www.innoq.com/resources/ws-standards-poster/
 SOAP Primer

 http://www.w3.org/TR/soap12-part0
 Atom Publishing Protocol

 http://bitworking.org/projects/atom/draft-ietf-atompub-
protocol-17.html

 RESTful Web Services, book by Leonard Richardson and Sam Ruby
 http://www.amazon.com/Restful-Web-Services-Leonard-Richardson/

dp/0596529260
 WS-I Reliable Secure Profile

 http://www.ws-i.org/deliverables/workinggroup.aspx?
wg=reliablesecure

 My blog
 http://pzf.fremantle.org

http://roy.gbiv.com/pubs/dissertation/top.htm
http://roy.gbiv.com/pubs/dissertation/top.htm
http://www.innoq.com/resources/ws-standards-poster/
http://www.innoq.com/resources/ws-standards-poster/
http://www.w3.org/TR/soap12-part0
http://www.w3.org/TR/soap12-part0
http://bitworking.org/projects/atom/draft-ietf-atompub-protocol-17.html
http://bitworking.org/projects/atom/draft-ietf-atompub-protocol-17.html
http://bitworking.org/projects/atom/draft-ietf-atompub-protocol-17.html
http://bitworking.org/projects/atom/draft-ietf-atompub-protocol-17.html
http://www.amazon.com/Restful-Web-Services-Leonard-Richardson/dp/0596529260
http://www.amazon.com/Restful-Web-Services-Leonard-Richardson/dp/0596529260
http://www.amazon.com/Restful-Web-Services-Leonard-Richardson/dp/0596529260
http://www.amazon.com/Restful-Web-Services-Leonard-Richardson/dp/0596529260
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=reliablesecure
http://pzf.fremantle.org/
http://pzf.fremantle.org/

Thanks for listening!

